
THE EPICS ARCHIVER APPLIANCE

Murali Shankar, Luofeng Li, SLAC, Menlo Park, CA, USA*

Michael Davidsaver, BNL, Upton, New York, USA

Martin Konrad, National Superconducting Cyclotron Laboratory, Michigan State University, East

Lansing, MI 48824, USA**

Abstract

The EPICS Archiver Appliance was developed by a

collaboration of SLAC, BNL and MSU to allow for the

archival of millions of PVs, mainly focusing on data

retrieval performance. It offers the ability to cluster

appliances and to scale by adding appliances to the

cluster. Multiple stages and an inbuilt process to move

data between stages facilitate the usage of faster storage

and the ability to decimate data as it is moved. An HTML

management interface and scriptable business logic

significantly simplify administration. Well-defined

customization hooks allow facilities to tailor the product

to suit their requirements. Mechanisms to facilitate

installation and migration have been developed. The

system has been in production at SLAC for about 2 years

now, at MSU for about 2 years and is heading towards a

production deployment at BNL. At SLAC, the system has

significantly reduced maintenance costs while enabling

new functionality that was not possible before. This paper

presents an overview of the system and shares some of

our experience with deploying and managing it at our

facilities.

REQUIREMENTS

At SLAC, BNL and MSU, we use EPICS as our control

system for our various facilities; many of these have

several million Process Variables (PVs) that are used for

monitoring and control. A common requirement is to be

able to archive some of these PV's to facilitate

troubleshooting and analysis.

Archiving a million PVs has some non-technical

requirements. In addition to scaling gradually by adding

additional appliances/hardware, we need better support

for managing all aspects of the system. This includes

establishing policies for archiving and the flexible

configuration of archiving on a per PV basis. The ability

to manage the system using a web based UI and from

within scripts is a necessity. These management functions

must include the ability to make changes to the PV

archiving configuration without having to restart the

system. Finally, we needed a simple migration path from

the ChannelArchiver [1, 2].

In terms of storage, the data rates are high enough to

require faster storage but the data volumes are also large.

In addition, the archivers require the storage to be always

available. A solution using multiple stages of storage is

most economical. The first stage is expensive fast storage

local to the appliance and thus always available. The final

stages of storage can be much slower and cheaper with

relaxed requirements for availability including support for

tape storage. The final design should be extensible

enough to support storage from external vendors like S3.

Our customers also wanted a solution that focused on

data retrieval performance. The most common use of

archive data is to help trouble shoot machine operations.

Thus, the bulk of the data retrieval requests are for recent

data. Data can then be moved off to cheaper, slower

storage once it has aged. Our goal was to be able to

retrieve a day’s worth of 1Hz double data in less than 0.5

seconds; the actual retrieval numbers are much faster. In

addition, support for various forms of data reduction

during data retrieval is critical.

ARCHITECTURE

The EPICS Archiver Appliance uses an appliance

model for deployment. An installation is a cluster of

appliances. Each appliance (see Fig. 1) has multiple

storage stages and multiple processes.

A wide variety of storage configurations are possible

(on a per PV basis). The out-of-the-box configuration has

these storage stages

• STS (Short term store) - The most recent couple of

hours worth of data is typically stored here. This is

typically a RAM disk.

• MTS (Medium term store) - The most recent couple

of days worth of data is stored here. At SLAC, we

use RAIDed 15k SAS drives for the MTS. At MSU,

these are mirrored 1.2TB SAS drives.

• LTS (Long term store) - The rest of the data is stored

here. At SLAC, this is bulk storage (with tape

backups) that we rent from our computing dept. This

is a GPFS filesystem located elsewhere and is

mounted over NFS. At MSU, this is a NetApp

alliance with 2.8 TB of storage.

Figure 1: Components of an appliance.

 __

* Work is supported by the U.S. Department of Energy, Office of Science

under Contract DE-AC02-76SF00515 for LCLS I and LCLS II

** This work was supported in part by the National Science Foundation

under the Cooperative Agreement PHY-11-06007

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF030

Control System Infrastructure

ISBN 978-3-95450-148-9

761 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Each appliance has 4 processes; these are J2EE WAR

files and are deployed on separate Tomcat containers.

• Engine - This component establishes EPICS

Channel Access monitors for each PV in the

appliance. The data is written into the STS. This

component is based on the CS-Studio engine.

• ETL - This component moves data between

stores - that is, it moves data from the STS to the

MTS and from the MTS to the LTS.

• Retrieval - This component gathers data from all

the stores, stitches them together to satisfy data

retrieval requests.

• Mgmt - This component executes business logic,

manages the other three components and holds

runtime configuration state.

Appliances and components talk to each other using

various means including JSON/HTTP. The archiving

configuration is typically stored in a MySQL database;

each appliance has its own configuration database.

SERIALIZATION

The configuration database has an entry for each PV;

this is a JSON object that has the details on how the PV is

being archived. This includes the sampling mode and rate;

it also includes a list of data stores (see listing 1).

"dataStores": [

"pb://localhost?name=STS&rootFolder=...&partition

Granularity=PARTITION_HOUR...",

"pb://localhost?name=MTS&rootFolder=...&partition

Granularity=PARTITION_DAY...",

"pb://localhost?name=LTS&rootFolder=...&partition

Granularity=PARTITION_YEAR..."

],

Listing 1: Each PV has a list of datastores.

Each data store is implemented using a storage plugin;

these are Java objects that implement standard interfaces.

The out of the box install uses the PlainPBStoragePlugin;

this plugin uses Google's ProtocolBuffers (PB) [3] as the

serialization mechanism. ProtocolBuffers provide a

future-proof serialization framework with bindings for

many languages. Each EPICS V3 DBR type is mapped to

a distinct PB message. For EPICS V4 [4], NTScalars and

NTScalarArrays are mapped to their V3 counterpart PB

messages. All other V4 types are serialized using V4

serialization and stored as generic PB messages; thus

giving the archiver the ability to store any V4 type.

The PlainPBStoragePlugin stores its data in chunks;

each chunk contain serialized PB messages; one message

per archive sample; one sample per line. In addition, the

samples are ordered by their record processing

timestamps; these are guaranteed to be monotonically

increasing. Each chunk has a key that is based on the PV

name and the time partition of the chunk; for example,

EIOC/LI30/MP01/HEARTBEAT:2012_08_24_16.pb.

Partition boundaries are strictly enforced; thus, the chunk

key has enough information to identify the boundaries of

the contained data. By default, the PlainPBStoragePlugin

stores its data in files; one file per chunk with the chunk

key as the file name.

These various constraints let us use various search

algorithms on PB files without the need for an index.

However, in the future, if an index is needed for certain

PV's, the system can be enhanced to use indexes for these

PV's. PB files try to optimize on storage consumption. On

average, a PB ScalarDouble consumes about 21 bytes per

sample to store the timestamp, value, status and severity

along with several other optional fields.

ARCHIVE PV WORKFLOW

Supporting complex configuration on a per PV basis

can be overwhelming if the end user had to make these

decisions every time they add a PV to the archiver. In

addition, many facilities use automated scripts to manage

their archiving requests. This implies that the system must

automatically make these decisions on behalf of the user.

When users request PVs to be archived, the mgmt and

engine components sample the PV to determine event

rate, storage rate and other parameters. In addition,

various fields of the PV like the NAME, ADEL, .MDEL,

.RTYP etc. are also determined. All of these parameters

are passed to an installation specific policy that is

implemented as a Python script. The policy examines this

information and makes configuration decisions on behalf

of the user. For example, you can establish and encode a

policy to archive waveforms at a rate no more than a 1Hz.

Optionally, as part of a policy, we can also archive

fields in addition to the VAL field. For example, one can

establish a policy to archive the HIHI, LOLO in addition

to the VAL field for all records of RTYP ai. These fields

are stored as part of the data for VAL field.

A clustered solution also implies that a decision must

be made as to which appliance is used to archive a PV. To

help with this decision, the archivers maintain capacity

metrics and use a minimax algorithm to automatically

assign PVs to appliances.

DATA RETRIEVAL

The EPICS Archiver Appliance comes with plugins for

the ArchiveViewer and the CS-Studio databrowser [5].

We are also currently working on a HTML5 viewer

(for archive data; this is bundled as part of the

appliance.

Figure 2: HTML5 viewer (in development).

Fig. 2)

WEPGF030 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

762C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

A principal focus is data retrieval performance; the

following chart (see Fig. 3) shows response times for

data retrieval requests from data gathered over several

weeks from a production system. Data retrieval requests

are categorized in terms of their time span (endtime -

starttime). Over 75% of the requests are for time spans

less than a day and complete within 100ms (on an

average). Requests with time spans of up to a week take

an average of 250ms. Requests for time spans of a year

with data reduction can complete in less than a couple of

seconds; this involves binning over 30 million samples

into about 8000 samples at runtime.

Figure 3: Response times vs time span of requests.

The EPICS Archiver Appliance supports data retrieval

over HTTP in multiple formats/MIME types. A binary

RAW format is supported that minimizes translation from

the PB format. There are Java and Python libraries for

clients interested in retrieving data using the RAW

format. The carchivetools suite [6] includes command

line Python scripts that retrieve data using the RAW

format from the appliance. It also includes tools for

searching. In addition, we have support for JSON, CSV,

MAT, TXT and SVG MIME types. These formats let

clients use tools like Matlab, Python, Excel, JMP and

others to get data from the archiver.

Getting data into a tool necessitates construction of a

data retrieval URL as the first step; this URL contains

only the PV name and the start and end times of the data

retrieval request. Both data retrieval and business logic

requests can be dispatched to any random appliance in the

cluster (Fig. 4); the appliance has the functionality to

route/proxy the request accordingly.

Figure 4: Requests can be dispatched to any appliance.

This enables us to use load balancers like

mod_proxy_balancer (Fig. 5) in front of all the

appliances in the cluster.

Figure 5: Traffic mgmt between clients and appliances.

Reducing data during data retrieval is a crucial

requirement; however, there is no single correct way to

reduce data. The EPICS Archiver Appliance has support

for processing the data during data retrieval. This includes

typical statistics operators like mean, standard deviation

etc. These operators bin the data into bins of specified

duration and then apply the specified operator on the bin.

The appliance has the ability to precompute data

reductions using these operators as part of the ETL

process. If applicable, these precomputed data reductions

are used during data retrieval to speed up the response

times. These same operators can also be used to decimate

data as ETL moves it from one store to another. Thus, one

can store a few days worth of data at full rate and then

decimate the data as it is moved to a slower store.

ADMINISTRATION

The EPICS Archiver Appliance offers a web UI (Fig. 6)

for typical configuration tasks.

Figure 6: Web based management UI.

The web UI communicates with the appliances using

JSON/HTTP and uses business logic exposed as web

service calls. All of these web service calls are also

available for use from external scripting tools like Python.

There is a rich catalog of business logic that lets the user

add/modify/delete PVs from the archiver, pause/resume

PVs, reshard/consolidate data etc. None of these business

logic operations requires an appliance restart. In addition,

a wide variety of reports based on static and dynamic

information are available. These include reports based on

storage rate, disconnected PVs and many others. The

reports are also accessible from Python scripts; thus one

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF030

Control System Infrastructure

ISBN 978-3-95450-148-9

763 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

can script the entire monitoring and administration of a

cluster of appliances using Python scripts.

INTEGRATION WITH

CHANNELARCHIVER

To facilitate a smooth transition from the

ChannelArchiver, the EPICS Archiver Appliance includes

the ability to proxy the ChannelArchiver XMLRPC data

server. This allows facilities to skip a migration step

where massive amounts of data have to be converted to a

new format. The appliance also includes the ability to

import ChannelArchiver XML configuration files.

However, for facilities that do wish to convert their data,

MSU has developed utilities to convert ChannelArchiver

data into appliance PB files. The carchivetools suite also

includes two backend servers, a2aproxy and archmiddle

that can be used as a switchable proxy between a

ChannelArchiver and an EPICS Archiver Appliance.

INSTALLATION

The EPICS Archiver Appliance requires recent

versions of Linux, Java and Tomcat (and MySQL if

configuration is stored there). While some installation

scripts are provided; the easiest way to get going quickly

is to use the provided Puppet modules. In addition, a

quick start script is provided to facilitate easy evaluations.

DEPLOYMENTS

Table 1: Facilities with Production Deployments

Name Lab PVs GB/day Years Cluster

LCLS SLAC 200K 19 1.5 3

NSLS2 BNL 61K 42 0.5 1

NSCL MSU 83K 1 2 2*

FACET SLAC 34K 1 2 1

TestFac SLAC 37K 1 2.5 1

* NSCL has two appliances to provide for redundancy

At SLAC, we have significantly reduced the maintenance

costs of archiving; many tedious tasks have been

eliminated. Many new use cases are currently being

explored, including the use of archivers for fault analysis.

The ease with which one can set up a small personal

archiver that can then be integrated with a wide variety of

tools is very useful. Many IOC developers regularly use a

personal archiver to aid in development. Some operators

use a separate archiver to gather data at high rates for a

small set of PVs and then run complex processing on

these datasets.

CUSTOMIZATION

It is unlikely that the features of the EPICS Archiver

Appliance match a facility's requirements exactly over a

period of time. The EPICS Archiver Appliance has been

built with customization in mind. In addition to

generating custom builds for a site specific look and feel,

the product can be customized with site specific policies,

configuration stores etc. The storage plugin interface

allows a facility to store the data using an alternate

storage scheme. If the PB serialization scheme is

acceptable, but the notion of storing PB chunks as files is

not; then Java NIO.2 can be used to store the chunks in

any key value store. If not, a custom type system can be

used to support an alternate serialization scheme.

SUMMARY

The EPICS Archiver Appliance has been in production

use at SLAC/MSU/BNL and other facilities for two years.

It has eliminated tedious maintenance tasks, reduced

maintenance costs and allowed us to add more PV's to the

archivers. Various facilities are in the process of

evaluating/switching to the EPICS Archiver Appliance. A

collaborative ecosystem has developed around the

product with many labs contributing to the effort.

REFERENCES

[1] ChannelArchiver

http://icsweb.sns.ornl.gov/kasemir/archiver/manual.pdf

[2] K. U. Kasemir and L.R.Dalesio, "Overview of the

EPICS Channel Archiver", ICALEPCS, 2001.

[3] Protocol Buffers:

https://developers.google.com/protocol-buffers/?hl=en

[4] EPICS V4 Normative Types

http://epicspvdata.sourceforge.net/alpha/normativeTypes/

normativeTypes.html

[5] Control System Studio

 http://controlsystemstudio.org/

[6] carchivetools

https://github.com/epicsdeb/carchivetools

WEPGF030 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

764C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure

