Proceedings of ICALEPCS2015, Melbourne, Australia

WEPGF015

DRIVERS AND SOFTWARE FOR MicroT'CA .4*

M. KillenbergT, M. Heuer, M. Hierholzer, L. Petrosyan, C. Schmidt, N. Shehzad,
G. Varghese, M. Viti, DESY, Hamburg, Germany
S. Marsching, aquenos GmbH, Baden-Baden, Germany
M. Mehle, T. Susnik, K. Zagar, Cosylab d.d., Ljubljana, Slovenia
A. Piotrowski, FastLogic Sp. z o0.0., £.6dz, Poland
T. Kozak, P. Predki, J. Wychowaniak, £.6dZ University of Technology, £.6dZ, Poland

Abstract

The MicroT'CA 4 crate standard provides a powerful elec-
tronic platform for digital and analogue signal processing.
Besides excellent hardware modularity, it is the software re-
liability and flexibility as well as the easy integration into ex-
isting software infrastructures that will drive the widespread
adoption of the new standard. The DESY Microl'CA .4
User Tool Kit (MTCA4U) comprises three main compo-
nents: A Linux device driver, a C++ API for accessing the
MicroT'CA .4 devices and a control system interface layer.
The main focus of the tool kit is flexibility to enable fast
development. The universal, expandable PCI Express driver
and a register mapping library allow out of the box opera-
tion of all MicroT'CA .4 devices which are running firmware
developed with the DESY board support package. The tool
kit has recently been extended with features like command
line tools and language bindings to Python and Matlab.

INTRODUCTION

The MicroT'CA 4 crate standard [1,2] provides a platform
for digital and analogue data processing in one crate. It is
geared towards data acquisition and control applications,
providing a backplane with high-speed point to point serial
links, common high-speed data buses as well as clock and
trigger lines. In typical control applications, large amounts
of data have to be digitised and processed in real-time on
the front end CPU of the MicroT'CA .4 crate.

MTCA4U—The DESY MicroTCA.4 User Tool Kit

The main goal of the DESY MicroI'CA.4 User Tool Kit
(MTCAA4U) [3] is to provide a library which allows efficient,
yet easy to use access to the MicroI'CA.4 hardware in C++.
In addition, it features an adapter layer to facilitate interfac-
ing to control system and middleware software. The design
layout of the tool kit is depicted in Fig. 1.

LINUX KERNEL MODULE

The Linux kernel module (driver) provides access to the
MicroT'CA .4 devices via the PCI Express bus. As the ba-
sic access to the PCI Express address space is not device
dependent, we follow the concept of a universal driver for
all MicroT'CA .4 boards. The kernel module uses the Linux

* This work is supported by the Helmholtz Validation Fund HVF-0016
“MTCA .4 for Industry”.
 martin killenberg @desy.de

Control System Infrastructure

Device Driver Model which allows module stacking, so that
the driver can be split into two layers: A universal part pro-
vides all common structures and implements access to the
PCI Express I/O address space. The device specific part
implements only firmware-dependent features like Direct
Memory Access (DMA), and uses all basic functionality of
the universal part. For all devices developed at DESY the
firmware will provide a standard register set and the same
DMA mechanism, which permits to use a common driver
for most boards. For devices from other vendors the univer-
sal part enables out-of-the-box access to the basic features,
which can be complemented by writing a driver module
based on the universal driver part. Like this, the interface
in MTCA4U does not change and the new device is easy to
integrate into existing software.

The MircoTCA .4 platform allows hot-plugging of all com-
ponents, which means the PCI Express components can ap-
pear and disappear at run time. Usually this is not the case
for PCI Express hardware, and not all drivers are prepared to
handle this situation. For the drivers provided by MTCA4U
special attention has been paid to make the driver hot-plug
capable and allow safe operation at all times.

THE C++ DEVICE API

The core piece of MTCA4U is the C++ device access
library, which provides a high level interface to the hard-
ware. Its main component is the Device class (see Fig. 2),
which provides a convenient interface to access registers
in the hardware I/O address space. The Device class is
not accessing the hardware directly but uses the abstract
DeviceBackend interface, which has several implemen-
tations. The PcieBackend is accessing the PCI Express
hardware through the Linux kernel module, abstracting im-
plementation details like IOCTL sequences from the user. A
DummyBackend can provide the same set of registers, simu-
lated in the RAM of the CPU module. Deriving from this
class, the user can simulate firmware functionality of a spe-
cific device, which simplifies unit and integration testing.
The latest addition is the RebotDevice, which implements
the “Register-based over TCP” protocol (ReboT). This al-
lows access to network devices, either via the backplane of
the MicroT'CA crate or through an external network, broad-
ening the scope of the MicroTCA.4 User Tool Kit also to
applications outside the MicroI'CA form factor.

ISBN 978-3-95450-148-9
725

WEPGF015

Proceedings of ICALEPCS2015, Melbourne, Australia

)

Board Support Package]

Open Source
- Driver

Register
Map

- Base API + Language Bindings
- Hardware Monitor
- Control System Tools

Closed Source (example)
- Low Level Radio Frequency (LLRF)
control library for the accelerator

Servers

/dev/mtca_slot0

C++ Device API

Mapping
Library

- Control system dependent

Python Bindings)

.

Matlab Bindings

(ot wé,) [
Qt Hardware Monitor

C++ LLRF Application

(= J

o

)

o
Command Line Tools

(Control System Adapter)

o)

E‘LLRF EPICS Server LLRF DOOCS Server

3

: OPC-UA

iYOUR Control System?é
YOUR LLRF Server i

Figure 1: The design concept of the MicroT'CA.4 User Tool Kit MTCA4U.

Device

-backend: DeviceBackend *
-registerInfoMap: RegisterInfoMap *

+read(name:string): uint32_t
+write(name:string,value:uint32_t): void

<<Interface>>
DeviceBackend

RegisterinfoMap

+read(address:uint32_t): uint32_t

+write(address:unit32_t,value:uint32_t):

+getAddress(name:string): uint32_t

void

LockingBackend PcieBackend

RebotBackend DummyBackend

L<>{#backendImpl: DeviceBackend *

+read(address): uint32_t
+read(address): uint32_t

+write(address,value): void

+read(address): uint32_t
+write(address,value): void

+read(address): uint32_t
+write(address,value): void

+write(address,value): void

1

DFMC_MD22Dummy

+read(address): uint32_t
+write(address,value): void

Figure 2: The MTCA4U device structure.

The Back-End Factory

Software using the MTCA4U device to access register
based hardware does not have to know all back-ends at com-
pile time. A plugin mechanism allows registering new back-
end types to a factory at run time. It uses a configuration file
to define shared objects which are loaded at the start of the
programme. Like this, the user can easily extend the portfo-
lio of back-ends, be it a new hardware protocol or a custom
dummy device. As the loading of the back-end is only done
at run time, a library does not have to be modified to run
with a mock, which makes this a strong tool for software

ISBN 978-3-95450-148-9
726

tests and for development if access to hardware is scarce for
software developers.

Register Name Mapping

Another main feature of the C++ library is the register
name mapping. With evolving firmware, the address of a
register can change in the I/O address space. To make the
user code robust against these changes, the registers can be
accessed by their name instead of using the address directly,
which also improves the code readability. The required map-
ping file is automatically generated by the Board Support

Control System Infrastructure

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF015
@ B ororcvion 28 ®
File Plugins Settings Help
Devices: Modules/Registers: Register properties Options
gﬂmmg T B%\IASED EIRMVIARE Register name _J Continuous read (250 ms)
DUMMY3 WORD COMPILATION [AREA_DMAABLE_FIXEDPOINT16_3 _Read after write
DUMMY4 WORD_STATUS Module ¥/ Show plot window
buMMYS oo useR L T
egister bar i i i
WORD_CLK_CNT > 9 Fixed Point Interpreration Read
WORD_CLK_CNT 0 - o Register width Write
WORD_CLK_CNT_1 Registenaddigssigi 3¢
WORD_CLK_MUX 0 Fractional bits :
WORD_CLK_MUX_0 Number of elements
WORD_CLK_MUX_1 1024 3
WORD_CLK_MUX_2 m Sign bit
WORD_CLK_MUX_3 letalsioe =
Device status WORD_CLK_DUMMY 4096
BTG e WORD_CLK_RST Values
EvICE IS open. ose
& = WORD_ADC_ENA raw (dec) raw (hex) double
; : AREA_DMAABLE
Device properties AREA DMA VIA DMA 0 0x0 0.0000
Device name AREA_DMAABLE_FIXEDPOINT10_1 11 ox1 0.1250
[bummyz AREA_DMAABLE_FIXEDPOINT16_3 25014 0x4 0.5000
o » TESTING 3 9 0x9 1.1250
Device file - MOTOR 4 16 0x10 2.0000
Idev/.mtcadummys‘l WORD_SPI_WRITE 5 25 ox19 3.1250
Map file WORD_SPI_READ e 36 ox24 4.5000 ;
/mtcadummy.map WORD_SPI_SYNC 7 |ao 031 6.1250 e
. DEal
Load Boards _I Autoselect previous register N S oxi0 O M °
Figure 3: A screen shot of the Qt Hardware Monitor.
Package together with the firmware. Performance overhead LANGUAGE BINDINGS

due to repeated table look-up is avoided by the use of register
accessor objects, which cache the address and provide fast
access to the hardware.

Numeric Conversions

Unlike modern CPUs, hardware like FPGAs and micro
controllers does not always have a floating point computing
unit. Usually the calculation is done in a fixed point format
and the interpretation of the raw data words depends on
the firmware. However, the CPU which is talking to the
hardware probably will use floating point arithmetic and has
to convert to the right format before sending a data word. The
MTCA4U mapping file does not only contain information
about the register’s size and address, but also about the fixed
point interpretation in the firmware. The register accessors
automatically convert the incoming floating point values
to the right data format, which speeds up development in
C++ and makes tools like the graphical user interface more
versatile.

GRAPHICAL USER INTERFACE

The mapping file contains information of all the regis-
ters implemented in the firmware, which allows displaying
this information in a graphical user interface (GUI). The Qt
Hardware Monitor lists all registers and their properties, and
permits the user to interactively display and modify their
content, including automatic fixed point conversion. As the
mapping file is automatically generated together with the
firmware, this tool can be used for debugging and prototyp-
ing immediately after the firmware has been deployed. The
hardware monitor is written using Qt [4], an open source,
cross-platform user interface framework which is available
on all Linux platforms. A screen shot of the Qt Hardware
Monitor is shown in Fig. 3.

Control System Infrastructure

Scripting languages are ideal for prototyping and hard-
ware testing because they provide direct interaction without
having to compile code. For this reason, MTCA4U pro-
vides language bindings to Matlab and Python, as well as
Linux command line tools. These allow writing configura-
tion scripts for hardware with just a few lines of code. The
output format of the command line tool is designed so that
it can be easily parsed by a script. This allows accessing the
PCI Express bus of a remote crate through an ssh tunnel,
and evaluate the output in an automated way.

CONTROL SYSTEM ADAPTER

MicrdT'CA.4 allows developers to implement sophisti-
cated control applications, which have to interface with the
facility’s SCADA system'. Usually this means a tight cou-
pling of the application and the control system, which makes
it difficult to port applications between different control sys-
tems. MTCA4U provides an interface layer to minimise
these couplings and improve the re-usability of complex
control applications, which are expensive to develop and
maintain. This decoupling also removes the dependency on
control system locks, which facilitates the implementation
of real-time capable controls. A more detailed description
of the MTCA4U control system adapter can be found in [5].

OUTLOOK

To provide highly reliable software for user facilities with
minimal downtime, software testing is an essential part of
quality assurance. To facilitate the development of functional
mock-ups and software simulations, we are currently work-
ing on a “virtual lab” framework. Using the DummyBackend
as a starting point, it will provide direct accessors to the
simulated address space, a model of data sources and sinks

! Supervisory Control and Data Acquisition system
ISBN 978-3-95450-148-9
727

WEPGF015

to connect different building blocks, and a virtual timer
framework. The latter is particularly useful to study race
conditions in multi-threaded applications or the interplay of
hardware and software.

The virtual lab is currently in its early prototyping phase.

CONCLUSIONS

The DESY MicroT'CA.4 User Tool Kit (MTCA4U) is a
C++ library which allows convenient access to hardware
with an extensible register based interface. Starting from
PCI Express, which is used inside a MicroTCA .4 crate, the
introduction of new, network based protocols extends its
reach beyond a single crate and even MircoT'CA itself. The
tool kit comprises a C++ API with register name mapping
and automatic type conversion, with bindings to widely used
scripting tools like Matlab and Python. A graphical user
interface is available for fast prototyping and firmware de-
velopment, allowing direct access to the hardware without
writing a single line of code. A control system adapter
allows the application code to be independent from the ac-

ISBN 978-3-95450-148-9
728

Proceedings of ICALEPCS2015, Melbourne, Australia

tual control system in use. This makes the business logic
portable between control systems with minimal effort and
allows a wider field of application for software written using
MTCAA4U.

MTCAA4U is published under the GNU General Public
License and available on DESY’s subversion server [3].

REFERENCES

[1] PICMG®, “Micro Telecommunications Computing Architec-
ture, MicrolT'CA.0 R1.0” (2006).

[2] PICMG®, “MicroTCA® Enhancements for Rear /O and Pre-
cision Timing, MicroTCA.4 R1.0” (2011/2012).

[3] MTCA4U—The DESY MicroT'CA.4 User Tool Kit, Subver-
sion Repository https://svnsrv.desy.de/public/mtcadu

[4] The Qt Project, http://qt-project.org/

[5] M. Killenberg et al., “Integrating control applications into
different control systems”, TUD3005, These Proceedings,
ICALEPCS’15, Melbourne, Australia (2015).

Control System Infrastructure

