
OPEN SOURCE CONTRIBUTIONS AND USING OSGI BUNDLES AT
DIAMOND LIGHT SOURCE

M. Gerring, A. Ashton, R. Walton, Diamond Light Source, Oxfordshire, UK

Abstract

This paper presents the involvement of Diamond Light
Source (DLS) with the open source community, the
Eclipse Science Working Group and how DLS is
changing to share software development effort better
between groups. The paper explains moving from
product-based to bundle-based software development
process which lowers reinvention, increases reuse and
reduces software development and support costs. This
paper details specific ways in which DLS are engaging
with the open source community and changing the way
that research institutions deliver open source code.

INTRODUCTION
Diamond Light Source [1] is a third-generation 3 GeV

synchrotron light source based on a 24-cell double-bend
achromatic lattice of 561m circumference. The photon
output is optimised for high brightness from undulators
and high flux from multi-pole wigglers. The accelerators
and first phase of seven photon beamline were
constructed from 2002 to 2007; a second phase of fifteen
photon beamlines from 2006 to 2012; and a third phase of
ten photon beamlines was approved in 2011 with
construction due to finish in 2017-8.

 As well as the construction of the synchrotron, the
early phases of the project saw choices about the software
which would be deployed on site. For hardware control
such as motors, the EPICS framework was chosen which
included a data driven user interface called EDM [2] for
configuring devices. The acquisition and online data
analysis system was developed from a product in
operation at the SRS [3] called GDA [4] previously
presented at ICALEPCS.

 Diamond Light Source (DLS) have switched GDA
(client) and a standalone analysis product called DAWN
[5] to load using a system called OSGi (Open Service
Gateway Initiative) [6]. In addition, the EPICS/EDM
screens are planned to be phased out of active support [7]
in line with the move to RHEL7. The next generation of
software for controls and acquisition is based on Eclipse
Rich Client Platform (RCP). This allows software
products to be built from OSGi bundles and features to be
developed which are interoperable between controls,
acquisition and data analysis software. This paper details
how DLS interacts with open source technology to deliver
feature rich, interoperable and reusable software systems
across groups and in the wider community.

Eclipse RCP [8] is a software technology which has

been available for more than a decade. It is used to build
user interface applications and OSGi servers. DLS are
utilizing it as a platform to deliver native user interface
clients. One of the first RCP clients in production for
acquisition was on the B18 beamline, presented at
ICALEPCS 2011 [9].

 The Eclipse Foundation is also an open source
publisher which verifies open source code for intellectual
property (IP) and software license. Its rigorous IP process
[10] renders code safe for commercial companies and
institutions to reuse at reduced risk of litigation. It
provides a rich open source feature set, similar to that on

checked bundles has provided many useful features which
DLS have been able to reuse within software products.

 In 2014 DLS proposed an Eclipse project [11] to make
aspects of its DAWN product open source and IP checked
by the Eclipse Foundation. This project was granted and
IP checking is active, nearing completion at the time of
this conference.

How Open Source Works

 The procedure in scientific institutions active in open
source software release has often been to provide source
using GNU Public License (GPL). Various mechanisms
have been used to do this for example: zip file on an ftp
site, by implementing a web site using a technology such
as Redmine or by using an open repository site like
github. These approaches are now considered unsafe
however because the GPL can force institutions to release
previously unready or non-public code. More importantly,
the source code has often not been IP checked before it is
released. Foundations such as Apache and Eclipse provide
an IP checking service. The service gives confidence to
the copyright holder that they have provided something
for which they have a lower risk of litigation. The source
code of the software is also more likely safe to be re-used.
This promotes wider use and contributions from outside
collaborators.

ECLIPSE SCIENCE WORKING GROUP
DLS, Oak Ridge National Laboratory [12] and IBM

have formed an Eclipse Science Working Group (SWG)
in conjunction with ten other members ranging from
small contractors to large commercial companies. The
SWG members have started projects such as Triquetrum,
Chemclipse and Integrated Computational Environment
(ICE), links to which can be found on the web site [13].

WEB3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

598C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

The SWG also propose projects such as Eclipse Rich
Beans and Eclipse Advanced Visualization. The SWG are
working together on interoperable features and to deliver
novel software solutions. A key area identified to allow
interoperability has been the description and mathematics
of n-dimensional data. In order to address this, DLS have
produced an API of two OSGi bundles. These bundles are
similar in scope and functionality to numpy [14] for
python. The SWG have identified data description
important to making future software features
interoperable/reusable and propose projects planned to
reuse this work in other fields.

SOFTWARE IN BUNDLES
Traditionally software has been created using designs

which are non-modular at runtime all of the program
has to be in memory for it to run. In the Java world, this
resulted in long start up times because a large classpath
of jar files (compiled code) had to be resolved while
software started.

OSGi bundles make code modular and low
dependency. They have a feature known as declarative
services which export functionality to other bundles
without making hard dependencies. This means that
software does not have to fully be in memory when it is
run and so has fast start up times. Without hard
dependencies, the architecture can load features
incrementally as they are required by the user. It also
means that software is made formally modular making it
easy to reuse within different products because its
requirements for compilation are low and well defined.
The declarative services approach results in lower
software development and support costs.

 DLS have divided features into OSGi bundles for
many features, for example: data including nD
mathematics, file loading including HDF5, plotting and
visualization, user interface widgets and auto generation,
communication and devices, interacting with remote data,
hardware configuration and mathematical processing
pipelines, see also Table 1. This approach is leading to a
swap in orientation from developing products to
developing bundles. Management and support engineers
are then free to define products based on the needs of the
synchrotron users, software developers can more easily
work together on multiple products and features can be
reused in multiple areas.

CASE STUDIES

Data Format

A first common problem encountered by institutions
running large experimental physics control, is the format
in which data is written. Then once data is read into
memory from a given format, a second problem is that
data needs to be described in a standard way. Various
frameworks have existed which deal with these problems
at different institutions and in different programming
languages.

DLS software developers took the approach that the
details of the file format and the way it is loaded should
be hidden from the part of software where the data is
used. An OSGi service was created for loading data
which supports a wide range of data formats such as
HDF5 incl. NeXus, CBF, ASCII formats and most
standard image formats. However it is also extendible in
the compiled product by users. This is available because
an extension point in the RCP framework has been
created whereby the application may be added to after
compilation and deployment. This approach means that
any data format can be supported, providing a reader for it
may be written.

These lines of code read one dataset from a file and

return an object similar to a numpy array, called IDataset.
This object is the key to the second problem. (A
comparison of MATLAB, numpy and IDataset is
available in the DAWNSci Project examples.) It means
that any application, written in Java, can load and share
the data of multiple formats and create tools which use
the data. The mathematics of the tools can be reused
because of the common data format. The user interface
can also be reused if the chosen platform is SWT. In
addition a non-RCP application is not precluded from
using the data layer, including non-OSGi based
frameworks. The feature is a standard Java jar file.

Plotting

3

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O01

Software Technology Evolution

ISBN 978-3-95450-148-9

599 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Malcolm

WEB3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

600C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Other Services

Service Description

Conversion Convert files from any format in which
can be loaded to any which may be
written.

Operation Allows the programmer to create a
processing pipeline from a large library
of mathematical operations and run the
pipeline over large image stacks on
clusters.

Persistence Save data, meta-data, masks and regions
to a persisted NeXus file which can be
loaded later and reimported.

Macro A service which maps user interface
actions with their python equivalent and
allows the user interface to print macro
commands into a running terminal while
using the user interface.

Expression A service to evaluate expressions. For
instance the programmer may enter
string expressions of datasets in
expression language similar to python
and evaluate them.

CONCLUSION

ACKNOWLEDGEMENT

REFERENCES
Table 1: Som e U seful Services A vailable from the
Framework.

Proceedings of ICALEPCS2015, Melbourne, Australia WEB3O01

Software Technology Evolution

ISBN 978-3-95450-148-9

601 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

