
INTEGRATING CONTROL APPLICATIONS INTO DIFFERENT
CONTROL SYSTEMS∗

M. Killenberg†, M. Hierholzer, C. Schmidt, DESY, Hamburg, Germany
S. Marsching, aquenos GmbH, Baden-Baden, Germany

J. Wychowaniak, Łódź University of Technology, Łódź, Poland

Abstract
Porting complex device servers from one control system

to another is often a major effort due to the strong code cou-
pling of the business logic to control system data structures.
Together with its partners from the Helmholtz Association
and from industry, DESY is developing a control system
adapter. It allows writing applications in a control system
independent way, while still being able to update the process
variables and react on control system triggers. We report on
the status of the project and the experience we gained trying
to write portable device servers.

INTRODUCTION
With embedded systems becoming more and more pow-

erful, the algorithms in the devices which are accessed via
control systems are becoming more and more advanced. Es-
pecially on MicroTCA [1] systems the hardware usually fea-
tures a powerful multi-core CPU with several GB of RAM.
TheMicroTCA.4 [2] extension brings trigger and clock lines,
as well as large rear transition modules which can be used
for demanding analogue control applications.

Many particle accelerators which are currently being build
are using or will use MicroTCA.4 for control of the radio
frequency (RF) in the accelerator, for instance FLASH [3]
and the European XFEL [4] hosted at DESY, Hamburg,
ELBE [5] at Helmholtz-Zentrum Dresden-Rossendorf, or
FLUTE [6] at KIT, Karlsruhe. The complex RF control ap-
plications shall be reused across the different accelerators,
while all the facilities are using different control systems. It
turned out that porting the software to a different control
system is a major effort because the code is strongly cou-
pled to the original control system. This lead to the idea
to have an adapter layer between the device library, which
implements the algorithms, and the control system, which
provides the communication protocols and integration into
the facility’s control infrastructure. This adapter shall be
part of the MicroTCA.4 User Tool Kit (MTCA4U) [7, 8],
a collection of libraries to facilitate the implementation of
control applications.

REQUIREMENTS
The main task of the adapter is to allow application code

to access process variables which are communicated to the
outside world in a control system independent way. For this,

∗ This work is supported by the Helmholtz Validation Fund HVF-0016
“MTCA.4 for Industry”.
† martin.killenberg@desy.de

the adapter has to use the functionality which is provided
by the control system, like communication protocols or the
addressing scheme.
The part of code which is device and control system de-

pendent has to be minimal, zero if possible. This type of
code is causing the huge workload when porting and main-
taining applications for multiple control systems.
Abstraction is easy to achieve if data is simply copied

back and forth between two domains, but this comes with
a performance penalty. So an additional requirement to the
adapter is to avoid unnecessary copying, especially of large
data structures like arrays. In addition, the adapter should
be thread safe and usable in real time application.
As a starting point and to check if the abstraction is

working, the adapter is tested with two control systems:
DOOCS [9] and EPICS [10]. DOOCS (used at DESY for
FLASH and the European XFEL), has an object-oriented
data model written in C++. EPICS 3, one the most widely
used control systems for particle accelerators and used at
FLUTE, has a channel-based C API. We intentionally used
two conceptually different control systems, hoping that the
abstraction needed to work with these two should also allow
other control systems to be used without too much modifica-
tions in the design.

DESIGN CONCEPT
The first implementation of the adapter focuses on pro-

cess variables. It provides data structures for scalars (8, 16
and 32 bit signed and unsigned integers, single and double
precision floating point), strings, and arrays of the numerical
data types. Each process variable is identified by a unique
name which describes its function inside the device code
(“TEMPERATURE” for instance for a device with a tem-
perature sensor). The name does not contain information
where the device is installed and in which context it is used.
This part depends on the control system and the facility, and
is added in the control system specific part of the adapter,
not in the device part.
The original idea to avoid copying, especially for large

arrays, was to have a single instance of the data. This would
be stored in a control system dependent type, an instance
which always has to be there to work with the particular
control system. The adapter would provide a wrapper, which
would be used inside the business logic. But it turned out
that this approach is not viable. DOOCS and EPICS have
different locking schemes for their variables, and only the
control system side could know when it is safe to access

Proceedings of ICALEPCS2015, Melbourne, Australia TUD3O05

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

581 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Adapter Variable Pair "VOLTAGE"

SenderReceiver Control System Variable
"VOLTAGE"Update

Use "VOLTAGE"
Update "TEMPERATURE"

Adapter Variable Pair "TEMPERATURE"

ReceiverSender
Update

Control SystemDevice Library

Control System Variable
"TEMPERATURE"

D
e
v
ic

e
 T

h
re

a
d

C
o
m

m
u

n
ica

tio
n

 T
h

re
a
d

Figure 1: The update flow using the control system adapter.

the variables, but not the control system independent device
part.
The solution is to have a control system independent in-

stance on the device side which can be accessed at any time,
and the control system variable on the other side, which can
have a control system lock (Fig. 1). These variables have
to be synchronised, which means that the abstraction at this
point requires one copy which cannot be avoided.1 As not
all control systems allow a variables to be input and output
at the same time, it was decided to restrict process variables
to be unidirectional (“control system to device” or “device
to control system”).

"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

1 0

2 3

(empty)

Figure 2: For arrays a process variable pair with sender
and receiver features two lock-free queues and at least four
pre-allocated buffers.

As one of the requirements for the adapter is to allow real
time threads in the device library, the variable on the device
side has to be lock-free. To implement this, the adapter’s
process variable is always a sender-receiver pair (Fig. 2),
using lock-free queues for transfer. As dynamic memory
allocation is not allowed in a real time thread, the mechanism
is working with a pool of pre-allocated buffers for arrays.
Sender and receiver each hold the reference to one buffer
at all times, which allows the business logic to access and
modify the data at will, except while sending or receiving.

1 A copy can be avoided if the control system type allows swapping of the
internal buffer.

The data being transferred is always the reference to a buffer,
not the buffer itself, which avoids unnecessary copying of
large data structures.2

When receiving, the receiver will pop the head of the
“filled buffers” queue. If it could get (the reference to) a new
buffer, it will push the now outdated buffer to the “available
buffers” queue, so the sender can reuse it. In case there are
no updated buffers available, the receiver will hold on to the
current buffer, as it contains the most up-to-date information
that is available on the receiver side.
Before actually sending, the sender will pop the head of

the available buffers queue to be sure it has a new buffer
which it can fill after sending (at all times there must be at
least one buffer on each the sender and the receiver side).
After that, the buffer to be send is pushed to the “filled buffers”
queue. Both receiver and sender first pop the head of the
queue where they retrieve the next buffer, and then push the
buffer which has been processed for use by the other side.
As this can happen at the same time, it means there have to
be at least four buffers.
In contrast to a triple buffer, which is a common scheme

in real time applications, this approach does not require
a dirty flag for the buffer, and the receiver does not have
to swap back to keep the latest available buffer in case no
updated buffer is found. As a further advantage, the number
of buffers can simply be increased, allowing a longer queue
in case there are fluctuations on the receiver side, but it is
fast enough to catch up with a certain backlog.
If the receiver is too slow to process data at the rate at

which the sender is producing it, data will be lost. This can-
not be avoided. In our implementation with a fixed number
of buffers it means the “available buffers” queue is empty.
In a naive implementation, the sender would keep its current
buffer to overwrite it (buffer 3 in Fig. 3). However, it is not
a good solution to stop sending because this would result

2 For scalars copying the value is not more expensive than copying the
pointer. In this case the values are directly copied and no additional
buffers are needed.

TUD3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

582C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems



"Filled Buffers" Queue

"Available Buffers" Queue

Sender Receiver

Buffers
0 1 2 3

3 0

2 1

(empty)

Figure 3: If the queue of available buffers is empty, a further
send call would pop the head of the “filled buffers” queue to
be overwritten (buffer index 1 in this picture), and perform
the send operation (buffer index 3 goes to the queue). Like
this, the information in the queue can be updated, whether
the receiver is active or not.

in newer data being discarded in favour of older data that is
already in the queue. If for instance the receiver was down
for several minutes, the information in the queue would be
several minutes old when it is received, while newer data
has been overwritten. Instead, the oldest information which
has not yet been received should be dropped. So in case no
free buffers are available, the sender will pop the head of the
“filled buffers” queue (buffer 1 in Fig. 3) to be overwritten,
and send buffer 3, which has just been filled. Like this, the
data in the queue is being updated even if the receiver is not
active.

Creation of a Process Variable
Not only the device business logic has to be independent

from the control system side, also the amount of device-
specific control system code should be minimised. For this
reason the creation of process variables is automated as
much as possible in the adapter (Fig. 4). The device is
calling the create function of the adapter, giving the name
and the direction (“device to control system” or “control
system to device”). Depending on the direction, a sender or
a receiver is returned to the device side. The other partner
of the process variable pair is stored in a list. After all
process variables have been created by the device, the control
system calls a function which creates the instances of the
control system variables for all process variables known to
the adapter. This function does not depend on the device
logic, which improves the decoupling. It is, however part
of the control system specific part of the adapter and looks
different for each control system. The level of abstraction
which can be achieved here may vary.

STATUS AND OUTLOOK
The current implementation of the control system adapter

provides process variables in a common, control system
independent part. A control system specific, but device
independent part has to be added to the adapter for each
target control system. Bindings for DOOCS and EPICS
have been written and are ready to use.

As “proof of concept”, some example devices with a cou-
ple of scalars and arrays have been created and tested using
either DOOCS or EPICS, and have afterwards been ported
to the other control system. This porting worked smoothly in
both directions. As expected, the device code itself did not
have to be modified. The amount of device-specific code is
very small on the control system side. The example devices
are down to three lines of device-dependent control system
code, for DOOCS as well as for EPICS, independent from
the number of process variables.3
To make use of additional control system features like

variable limits or histories, these currently have to be imple-
mented as device-specific code on the control system side.
This introduces additional work when porting and maintain-
ing the code for multiple control systems. It is currently
being discussed how the adapter can be extended to allow
the definition of the features on the device side, but use the
functionality from the control system. Especially features
which are expensive to implement like archiving and history
should not be duplicated in the adapter.

CONCLUSIONS
The MTCA4U control system adapter provides an inter-

face to use process variables in a device library without
introducing a coupling to a particular control system. The im-
plementation is lock free and transfers pre-allocated buffers
without copying. This step was necessary to allow operation
in control systems with different locking mechanisms. It
also enables the device logic to use process variables in a
real time thread.

The adapter consists of a common part, which implements
the decoupling, and a control system specific part, which
provides the particular bindings. As a proof of concept,
adapters for DOOCS and EPICS have been implemented.
An extension for OPC-UA is planned. As next steps, the
abstraction of additional control system features like variable
limits, engineering units and histories are intended.

All software is published under the GNU General Public
License and available in the respective software repositories
[11–13].

REFERENCES
[1] PICMG®, “Micro Telecommunications Computing Architec-

ture, MicroTCA.0 R1.0” (2006).

[2] PICMG®, “MicroTCA® Enhancements for Rear I/O and Pre-
cision Timing, MicroTCA.4 R1.0” (2011/2012).

[3] C. Schmidt et al., “Real time control of RF fields using a
MicroTCA.4 based LLRF system at FLASH”, 19th IEEE
Real-Time Conference, Nara, Japan (2014).

[4] M. Altarelli et al., “XFEL : The European X-Ray Free-
Electron Laser : Technical Design Report”, DESY-2006-097,
DESY, Hamburg (2007).

3 The device configuration files for the control system had to be written in
addition.

Proceedings of ICALEPCS2015, Melbourne, Australia TUD3O05

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

583 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Control System AdapterDevice Library

Control System Specific Code

create("VOLTAGE", CS -> Dev)

create("TEMPERATURE", Dev -> CS)

ReceiveListener "TEMPERATURE"

Control System

Sender "TEMPERATURE"

List

Sender "VOLTAGE"

Receiver "TEMPERATURE"

registerAllProcessVariables()

loop over "List"

registerListener()

registerAllProcessVariables()

Receiver "VOLTAGE"

UpdateListener "VOLTAGE"

Control System Variable
"VOLTAGE"

Control System Variable
"TEMPERATURE"

Figure 4: The creation of process variables is requested on the device side. The instantiation on the control system side is
automated as much as possible inside the adapter.

[5] F. Gabriel et. al., “The Rossendorf radiation source ELBE
and its FEL projects”, Nucl. Instr. Meth. B 161-163, 1143
(2000), http://dx.doi.org/10.1016/S0168-583X(99)00909-X

[6] S. Marsching et al., “Status of the FLUTE Control System”,
WPO013, PCaPAC2014, Karlsruhe, Germany (2014).

[7] M. Killenberg et al., “Drivers and Software for MicroTCA.4”,
WEPGF015, These Proceedings, ICALEPCS’15, Melbourne,
Australia (2015).

[8] MTCA4U—The DESY MicroTCA.4 User Tool Kit, Subver-
sion Repository, https://svnsrv.desy.de/public/mtca4u

[9] The Distributed Object Oriented Control System (DOOCS),
http://doocs.desy.de/

[10] Experimental Physics and Industrial Control System (EPICS),
http://www.aps.anl.gov/epics/index.php

[11] MTCA4U Control System Adapter, Subversion Repository,
https://svnsrv.desy.de/public/mtca4u/ControlSystemTools/

[12] MTCA4U EPICS Adapter, Subversion Repository,
http://oss.aquenos.com/svnroot/epics-mtca4u/

[13] MTCA4U DOOCS Adapter, Subversion Repository,
https://svnsrv.desy.de/public/mtca4u_applications/
DOOCS_Adapter/

TUD3O05 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

584C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems


