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Abstract
A unified control design is proposed to simultaneously

determine the inputs to both the fast and slow arrays of

correctors. By determining the interaction of the spatial

subspaces of each array of correctors, spatial modes which

require both fast and slow correctors can be identified. For

these modes, a mid-ranging control technique is proposed to

systematically allocate control action for each corrector. The

mid-ranging control technique exploits the different dynamic

characteristics of the correctors to ensure that the two arrays

of actuators work together and avoid saturation of the fast

correctors. Simulation results for the Diamond Storage Ring

are presented.

INTRODUCTION
In this paper, an approach to electron orbit controller

design is presented where there are two arrays of actuators

with different dynamics. The aim is to design a controller

which uses both corrector arrays to meet the electron beam

stability requirements so that: the time taken for computation

of the control action is not greater than that of the single

array system, the tuning for performance is intuitive and the

specific dynamics and constraints of each array are addressed.

In order to meet these goals, a method of exploiting the

knowledge of the spatial responses of the arrays of correctors

is used to determine the interaction between the controllable

subspaces. As a result the problem can be decomposed into

a series of single-input, single-output (SISO), two-input,

single-output (TISO) and two-input, two-output (TITO)

problems. As a consequence, the online computation is

minimised by selecting appropriate control directions when

subspaces of the two arrays overlap. In particular, if the

control directions of the two arrays are orthogonal, then the

problem can be interpreted as a decoupled structure (i.e.

two SISO structures) and SISO design techniques can be

applied. If however, the control directions align, the problem

has a TISO structure, and mid-ranging control is proposed.

The term mid-ranging control typically refers to the class

of control problems where two actuators are manipulated

to control one measured variable. Furthermore there is the

condition that one input should return to its midpoint or some

setpoint. The inputs usually differ in their dynamic effect on

the output and in the relative cost of manipulating each one,

with the fast input normally being more costly to use than the

slow input [1]. Therefore mid-ranging control schemes seek

to manipulate both inputs upon an upset but then gradually

reset or mid-range the fast input to its desired setpoint. Mid-

ranging control therefore is suitable for the fast and strong

corrector problem. Though it may be possible to manipulate

each actuator separately, for electron beam control it is

desirable to simultaneously manipulate both inputs, as the

strong correctors are bandwidth limited. Additionally, an

important characteristic of mid-ranging applications is that

input constraints on the faster input are avoided. There are

several approaches to designing mid-ranging controllers [1],

but in [2] an IMC structure is used, which is adopted in this

paper since it is consistent with the design for a single array

of actuators at Diamond Light Source [3].

MULTI-ARRAY CONTROLLER DESIGN
Subspace Interaction
For a storage ring electron orbit control system with

two arrays of actuators where Nf and Ns are the number

of actuators in each array, the dynamics of each array

gs, f (z) are given by a first order plus delay transfer function
determined by the open loop bandwidth as, f and delay

τs, f [4], and without loss of generality, it is assumed that:
1. gs (1) = 1 and gf (1) = 1 i.e. the DC gains of the

dynamics can be taken as unity.

2. the dynamics of gf (z) are faster than gs (z).
3. Ns ≤ Nf .

4. all the actuators of a given array have the same

dynamics.

The position measured at M BPMs is described by

Y (z) = gs (z)RsUs (z) + gf (z)RfUf (z) + D(z) (1)

where Us (z) and Uf (z) represent the inputs applied to the
two distinct arrays of actuators and D(z) represent the
disturbances acting on the electron beam. The response

matrices for each array is represented by Rs and Rf where

Ns = rank(Rs) and Nf = rank(Rf ). The response matrices
can each be expressed in terms of reduced singular value

decompositions so that,

Rs = ΦsΣsΨ
T
s , Rf = Φ f Σ fΨ

T
f (2)

where Φs ∈ RM×Ns , Σs ∈ RNs×Ns , Ψs ∈ RNs×Ns ,

Φ f ∈ RM×N f , Σ f ∈ RN f ×N f and Ψf ∈ RN f ×N f . The

columns of Ψs and Ψf in Eq. 2 represent the controllable

subspaces of the response matrices and even though Rs and

Rf are independent, there may be some overlap between

the controllable subspaces and the relationship between the

subspaces of Rs and Rf can be found by comparing the

subspaces of Φs and Φ f which are both orthogonal and can

be determined from Algorithm 12.4.3 in [5] such that

ΦTfΦs = A (3)

and the singular value decomposition of A is given by

A = ΦAΣAΨ
T
A (4)
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with left matrix, ΦA ∈ RN f ×Ns , right matrix ΨA ∈ RNs×Ns

and ΣA ∈ RNs×Ns such that

ΣA = diag{cos(θA1 ), . . . , cos(θANs
)} (5)

where θAi is the angle between the principal vectors

spanning Φ f and Φs which span the controllable subspaces

of Rs and Rf .

Internal Model Control Multi-array Design
An IMC structure for such a multi-array system results in

a closed loop response given by

Y (z−1) =
(
I − gs (z−1)RsQ̃s (z−1)

− gf (z−1)Rf Q̃ f (z−1)
)

D(z)
(6)

(for a zero setpoint) which can be expressed as,

Y (z) =
(
I − [Φs Φ f ]

[
gs (z)ΣsΨTs Q̃s (z)
gf (z)Σ fΨTf Q̃ f (z)

])
D(z) (7)

where
Q̃s (z) = ΨsΣ

−1
s Qs (z)Φ̃s

Q̃ f (z) = Ψf Σ
−1
f Q f (z)Φ̃ f

(8)

for some diagonal Qs (z) and Q f (z) and for Φ̃s ∈ RNs×M
and Φ̃ f ∈ RN f ×M . Therefore Eq. 7 can be expressed as

Y (z) =
(
I − [Φs Φ f ]

[
gs (z)Qs (z)Φ̃s

gf (z)Q f (z)Φ̃ f

])
D(z−1) (9)

and for steady state

Yss =
(
I − [Φs Φ f ]

[
Φ̃s

Φ̃ f

])
Dss (10)

since the diagonal transfer function matrices Q f (z) and
Qs (z) are chosen to have unity DC gain. Pre-multiplying

both sides by [Φs Φ f ]
T, projects the response into modal

space so that[
ΦTs
ΦTf

]
Yss =

[
ΦTs
ΦTf

]
Dss −

[
ΦTs
ΦTf

] [
Φs Φ f

] [Φ̃s

Φ̃ f

]
Dss (11)

and [
Φ̃s

Φ̃ f

]
= K

[
ΦTs
ΦTf

]
(12)

is defined such that K is a decoupling matrix, with K11 ∈
R
Ns×Ns , K12 ∈ RNs×N f , K21 ∈ RN f ×Ns and K22 ∈ RN f ×N f .

From Eq. 11 and Eq. 12,

Ȳss =
[
ΦTs
ΦTf

]
Yss, D̄ss =

[
ΦTs
ΦTf

]
Dss (13)

and

Ȳss =
(
I −

[
I ΦTsΦ f

ΦTf Φs I

] [
K11 K12

K21 K22

])
H̄ss . (14)

From the relationship in Eq. 3, then[
I ΦTs Φ f

ΦTf Φs I

]
=

[
I A

AT I

]
(15)

and given Eq. 4[
I ΦTs Φ f

ΦTf Φs I

]
=

[
ΦA

ΨA

] ⎡⎢⎢⎢⎢⎢⎣
I 0 ΣA
0 I 0

ΣA 0 I

⎤⎥⎥⎥⎥⎥⎦
[
ΦA

ΨA

]T
.

(16)

The ideal design would be to make K equal to the inverse

of the matrix in Eq. 16 and because it has a block diagonal

structure, this gives

K =
[
ΦA

ΨA

]
K̃

[
ΦA

ΨA

]T
(17)

where

K̃ =
⎡⎢⎢⎢⎢⎢⎣
Σ̃A 0 Σ̃A
0 I 0

Σ̃A 0 Σ̃A

⎤⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎣

I 0 −ΣA
0 I 0

−ΣA 0 I

⎤⎥⎥⎥⎥⎥⎦ (18)

and Σ̃A ∈ RNs×Ns is a diagonal matrix with elements[
Σ̃A

]
ii
=

1

1 − cos2 θAi

(19)

and � denotes element-wise multiplication. Difficulties

with this choice arise when cos(θAi ) ≈ 1 which occurs

when the angle between the subspaces is small. Instead,

heuristic choices for the elements of K̃ can be made, which

are described below:

1. Define the following:

K̃11 =

[
Σ̃A 0

0 I

]
, K̃12 =

[−Σ̃AΣA
0

]
K̃21 =

[
−Σ̃AΣA 0

]
, K̃22 = Σ̃A

(20)

2. When cos(θAi ) = 0, the directions Φs (:, i) and Φ f (:, i)
are orthogonal so that the system is considered as

a decoupled two-input, two-output system i.e. two

SISO structures. The relationships in Eq. 20 give this

automatically where the corresponding elements of K̃11

and K̃22 are set to 1 and K̃12 and K̃21 are set to 0 so that

the two directions are controlled independently.

3. When 0 < cos(θAi ) < 1, Eq. 20 automatically splits

the effort between the two actuators.

4. When cos(θAi ) is close to 1, the directions Φs (:, i) and
Φ f (:, i) almost line up and choosing to control in one
direction is appropriate. This is achieved by setting the

corresponding elements of either K̃11 or K̃22 to 1 and

the other to 0. In this case, the corresponding elements

of K̃12 and K̃21 are set to 0.

5. When cos(θAi ) = 1, the directions Φs (:, i) and

Φ f (:, i) align, giving a TISO structure. In this

case, mid-ranging control is appropriate due to the

actuator characteristics and the corresponding diagonal

elements of K̃11 and K̃22 are transfer functions designed

using a mid-ranging control technique.
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Table 1: Angles Between Controllable Subspaces of Rs and

Rf

cos(θAi )

i = 1 0.9978 0.9982

i = 2 0.9965 0.9896

i = 3 0.9503 0.8814

i = 4 0.8533 0.4833

i = 5 0.4750 0

i = 6 0.2290 0

i = 7 0 0

SIMULATION STUDY
In this section a simulation study is presented for the

storage ring, where two arrays of actuators with different

dynamics are considered. For this study, one array is

considered to contain ‘slow’ corrector magnets which are

bandwidth limited to 10 Hz (as = 2π × 10) and the second
array uses ‘fast’ corrector magnets which have a larger

bandwidth of 700 Hz (a f = 2π × 700) but are amplitude
limited. In each case the delay is taken as τs, f = 700 μs.
In this case, number of slow correctors are Ns = 7 and the

number of fast correctors are Nf = 165. The frequency

responses for the two arrays are shown in Fig. 1.

Choice of Control Directions
The cosine of the angles between the first 7 columns of

Φs and Φ f are determined by Eq. 4 and are listed in Table 1.

The following strategy is used for control:

• When cos(θAi ) ≈ 1, the control directions almost line
up, so mid-ranging control is used. From Table 1, this is

the case for i = {1, 2, 3, 4} horizontally and i = {1, 2, 3}
vertically.

• When cos(θAi ) is small, the control effort is split using
K̃ in Eq. 20. From Table 1, this is the case for i = {5, 6}
horizontally and i = 4 vertically.

• When cos(θAi ) = 0, the directions are decoupled and
SISO structures are used. For i = 7 horizontally and
i = {5, 6, 7} vertically both the fast and slow actuators

are used.

Mid-ranging Controller Design
For the TISO problem, the output is expressed as

Y (z) =
(
1 − gs (z)qmr s (z) − gf (z)qmr f (z)

)
D(z))+

(
gs (z)qps (z)) + gf (z)qp f (z)

)
Ur (z)

(21)

where gs (z) and gf (z) are the slow and fast process models

respectively and qmr s (z) and qmr f (z) are the associated
IMC controllers. The mid-ranging objective is to use both

inputs to control Y and return the fast input to its setpointUr .

Pre-filters qps (z) and qp f (z) are included to obtain a desired
response from Ur to Y [2]. Therefore, the corresponding

elements of K̃11 and K̃22 in Eq. 20 are qmr s (z)/qsi (z) and
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Figure 1: Frequency responses of fast (‘∗’ red) and slow
actuators (‘o’ blue), fast (‘x’ black) and slow (‘�’ magenta)
IMC controllers, fast and slow together complementary

sensitivity (‘�’ cyan), slow complementary sensitivity (‘�’
yellow) and closed loop sensitivity (‘�’ green) for the mid-
ranging design.

qmr f (z)/qfi (z) respectively. The control signals to the two
actuators are

Us (z) = qmr s (z)D(z) + qps (z)Ur (z)
Uf (z) = qmr f (z)D(z) + qp f (z)Ur (z).

(22)

The mid-ranging design specifies not only the complemen-

tary sensitivity with both actuators, Tf s (z), but also the
complementary sensitivity corresponding to the control

action with the slow actuator alone, Ts (z) which are defined
as follows,

Tf s (z) = gs (z)qmr s (z) + gf (z)qmr f (z)

Ts (z) = gs (z)qmr s (z).
(23)

To achieve the control objectives, Tf s (z) and Ts (z) must be
unity at steady state and the decoupling between the setpoint

on the faster input, Ur and Y is achieved through the use of

pre-filters which must satisfy the condition,

gs (z)qps (z) + gf (z)qp f (z) = 0. (24)

Because gf (z) and gs (z) both include delay terms, Ts (z) is
chosen as

Ts (z) = T−s (z)T+s (z) (25)

where T+s (z) includes the delays of both gf (z) and gs (z) so
that Ts (z)/gf (z) and Ts(z)/gs (z) are both causal and stable.
So in this case,

Ts (z) = z−(ds+d f ) 1 − λs
1 − λs z−1

(26)

and the controller for the slow array is given by

qmr s (z) = Ts (z−1)/gs (z)−1 (27)
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(a) Step in disturbance.
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(b) Step in fast actuator setpoint.

Time(s)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

y

0

0.5

1

1.5

Without mid-ranging
With mid-ranging
Setpoint

Time(s)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

u
s

-20

0

20

40

60

Time(s)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

u
f

0

0.1

0.2

0.3

0.4

(c) Step in output setpoint.

Figure 2: Responses of the output y and the slow us and fast u f actuator inputs to various step changes when both actuators

are used without mid-ranging control (‘x’ red) and with mid-ranging control (‘o’ blue). The reference for the output and

fast actuator input are also shown (‘∗’ black).

Likewise the fast and slow together sensitivity can be written

as

Tf s (z) = T−f s (z)T+f s (z) (28)

where T+f s (z) includes the non-minimum phase components

of gf (z) only so that Tf s (z)/gf (z) is causal and stable. The
controller for the fast array is determined by

qf (z) =
[
Tf s (z) − Ts(z)

]
/gf (z) (29)

Design of the pre-filters are described in [2] however a simple

choice is
qp f (z) = q̃p (z)g+s (z)

qps (z) = −q̃p (z)
gf (z)
g−s (z)

(30)

where q̃p (z)g+s (z) |ss = 1 for some filter q̃p (z). The chosen
complementary sensitivities are shown in Fig. 1 along with

the closed loop sensitivities. The slow actuator has a control

sensitivity that is low bandwidth only, while the fast actuator

has a control sensitivity that is mid-frequency only and goes

to zero at steady state; giving the mid-ranging effect. IMC

is advantageous because it gives the control sensitivities of

the fast and slow actuators directly as qmr f and qmr s .

In Fig. 2, the performance of the TISO system with

and without mid-ranging is compared for a step change

in disturbance, fast setpoint and output setpoint. Firstly,

the effect of a step change in the disturbance is shown in

Fig. 2a. The mid-ranging system firstly manipulates the

fast actuator and moves the slow actuator to ensure that the

fast actuator does not saturate by returning it to the setpoint

ur = 0. The non-mid-ranging system allows the fast input to

settle to a steady state close to the saturation limit of ±0.5
which on the next upset, the fast actuator may easily because

saturated. The responses to a step change in the fast actuator

setpoint are shown in Fig. 2b and as before, the fast actuator

achieves the requested setpoint change using themid-ranging

approach. Also, the effect in the output is decoupled through

the pre-filters so that changes to the fast actuator setpoint are

minimised on the output. Fig. 2c shows the responses to a

change in the output setpoint. Both approaches achieve the

required setpoint change, however the system without mid-

ranging uses more control effort from the slower actuator.

Mid-ranging control is therefore used to obtain a desired

response from Y (z) to D(z) and from Ur (z) to Uf (z) and a
decoupled response between Uf (z) to Y (z).

CONCLUSION
For a storage ring with two arrays of actuators used

for electron orbit control, the overlap of the controllable

subspaces of each array can be used to reduce the problem

into either SISO, TISO or decoupled TITO blocks. The

TISO blocks represent the modes of the system where both

fast and slow actuators are required for control. For such

cases, mid-ranging control is appropriate given the distinct

characteristics of the two arrays of actuators and provides a

control strategy that uses both actuators in such a way as to

meet performance specifications without causing the faster

actuator to saturate.
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