
DESIGN STRATEGIES IN THE DEVELOPMENT OF THE ITALIAN
SINGLE-DISH CONTROL SYSTEM

A. Orlati, M. Bartolini, S. Righini, INAF-IRA, Bologna, Italy

M. Buttu, A. Fara, C. Migoni, S. Poppi, INAF-OAC, Cagliari, Italy

Abstract

The Italian National Institute for Astrophysics (INAF)
manages three radio telescopes: the Medicina and Noto
dishes and the newly-built SRT. In order to make their
capabilities more valuable to the scientific community, we
started the DISCOS (Development of the Italian Single-
dish COntrol System) project. DISCOS is implemented
according to a distributed Component-Container model
and hides to the users the differences among the
telescopes by presenting the same user interface and the
same data format. The complexity of coping with three
heterogeneous instruments was handled designing a
software development infrastructure with a wide
monolithic codebase (libraries, components and generic
interfaces), which is completely shared among the three
product lines. This design permits to produce new
software components with a minimum effort and to set up
the same test suites for all the environments, thus leading
to an affordable development and maintenance process. In
this paper we illustrate the design strategies and the
development techniques used to realize and optimize this
common control software. We also provide a description
of the project status and future plans.

INTRODUCTION
The National Institute for Astrophysics (INAF)

manages three radio telescopes in Italy: The Sardinia
Radio Telescope (SRT) [1] and the Medicina and Noto
32-m dishes. The newly-built SRT, located in the Sardinia
island, was inaugurated in 2013. Since the early stages of
the project, staff from all the three telescopes has been
involved in the development of the SRT control software.
This forced us to cope with both the development of a
brand-new system and the maintenance of the already
existing telescopes, compelling the involved personnel to
learn and enhance their competence in distinct and
heterogeneous systems based on completely different
technologies. Developing a control software to be
installed at all the telescopes was the natural and
straightforward approach to this problem.

This idea was formalized with the creation of the
Development of Italian Single-dish COntrol System

(DISCOS). The project aims to provide all three Italian
radiotelescopes with a common infrastructure that
increases their capabilities and the usability for the
scientific community and, at the same time, optimizing
the efforts made by the technical staff for its development
and maintenance.

DISCOS is based on ALMA Common Software (ACS)
developed at ESO for the ALMA project [2]. ACS
implements a Component-Container model via CORBA
(Common Object Request Broker Architecture). It
provides a set of tools, libraries and development patterns
that hide the complexity of CORBA. This approach
permits to reduce the time required for coding and
development. The framework also supports both real and
non-real time platforms for C++, Python and Java.

The core of the project was completed during the main
development stage. The SRT and Medicina installations
are now fully operational and supervise all the telescope
operations. The Noto antenna is also equipped with a
preliminary version, which is going to be finalized in a
few months.

In this paper we describe the salient design choices that
allowed us to reuse the most part of the code for all the
production lines and to hide the instrument complexity
under a common infrastructure. We also illustrate the
maintenance and development workflows, as they are
fundamental part of the DISCOS design.

THE TELESCOPES
The INAF radiotelescopes share some common aspects

but are in general different from one another. Medicina
and Noto have passed through years of development and
updates, while SRT is the result of an organic
employment of state-of-the-art technologies. Table 1
recaps the main characteristics and the differences, listing
all the major sections – servo systems, front-ends, back-
ends. All the telescopes are presently participating in the
VLBI network. Medicina and Noto are also offered to the
scientific community as single-dish facilities (SRT will
very soon be, as well).

MOPGF110 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

330C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

Table 1: Fact Sheet of the Three Italian Radiotelescopes

 SRT Medicina Noto
Main mirror shaped profile, 64 m parabolic profile, 32 m parabolic profile, 32 m
Optical configuration Gregorian Cassegrain Cassegrain
Mount Altazimuth, fully steerable

12 motors + cable wrap
Altazimuth, fully steerable
4 motors

Altazimuth, fully steerable
4 motors

Antenna
Control Unit
(main servo system)

Beckhoff PLC
ethernet
vendor protocol

VxWorks based PC
ethernet
vendor protocol

VxWorks based PC
ethernet
vendor protocol

Primary Focus three degrees of freedom
INAF protocol

three degrees of freedom
INAF protocol

three degrees of freedom
INAF protocol

Secondary Focus six degrees of freedom
ethernet
INAF protocol

five degrees of freedom
ethernet
INAF protocol

five degrees of freedom
RS232
vendor protocol

Active Surface 1008 aluminium panels
1116 actuators
rs485/ethernet
vendor protocol

Not available 240 aluminium panels
244 actuators
rs232
vendor protocol

Receivers
 (RF bands*)

(0.305-0.410)
(1.3-1.8)
(5.7-7.7)
(18.0-26.5), 7 feeds
GPIB and ethernet
INAF protocol

(1.35-1.45)
(1.595-1.715)
(2.2-2.36)
(4.30-5.80)
(5.90-7.10)
(8.18-8.98)
(18.0-26.5), 2 feeds
GPIB, ethernet and RS232
various protocols

(0.317-0.320)
(1.40-1.72)
(2.20-2.36)
(4.70-5.05)
(8.18-8.58)
(22.18-22.46)
(39.0-43.3)
GPIB and RS232
various protocols

Backends
 (Bandwidth*)

TotalPower [continuum]
(up to 2.0), 1-1000 ms, 14 inputs
XARCOS [spectro-polarimetry]
(up to 0.125), 10 s, 2048 bins,
14 inputs
Roach [spectro-polarimetry]
(0.512), 10-1000 ms, 8192 bins,
up to 14 inputs
DFB [spectro-polarimetry]
(1.024), 1-4000 ms, 8192 bins,
4 inputs

TotalPower [continuum]
(up to 2.0), 1-1000 ms,
4 inputs
XARCOS [spectro-
polarimetry]
(up to 0.125), 10 s, 2048
bins, 14 inputs

TotalPower [continuum]
(up to 2.0), 1 ms, 4 inputs

* Frequencies are expressed in GHz.

A COMMON STRATEGY
Broad categories like development, operations and

maintenance are very demanding, especially when highly
qualified expertise is required. Our common infrastructure
enhances the quality and throughput of our work.

Operations
Operations are immediately affected by this strategy; as

operators can now manoeuvre the three telescopes facing
very slight differences in the user interface, their require a
single training. Similarly, astronomers are presented with

the same observing modes and the same data format at
every telescope. Operation manuals and documentation
are written with a common effort, sharing most of the
information among the infrastructures.

Maintenance
Maintenance consists in code debugging, configuration

changes or even complete replacements of software
components. Since regular telescope activities require to
minimize the time devoted to maintenance, the relative
work must be carried out with proper planning and
efficiency. This is eased by the use of the same ticketing

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF110

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

331 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

system to track software bugs and to monitor the antenna
status. A common workflow, involving every collaborator,
is employed to fix malfunctions. As the needed tests can
be performed at any telescope, we can choose the one
providing an adequate scheduling to test patch releases.

Development
The development of new software features is a time-

consuming activity that also requires testing time. The
DISCOS common platform highly reduces these needs.
New components can be deployed indifferently at all the
antenna systems, so that separate units can independently
carry out the development work. Moreover, once a new
piece of hardware is commissioned and integrated into the
software system of one of the telescopes, it can be
replicated at the other telescopes with little effort.

DESIGN
The design of the DISCOS control software highly

relies on the ACS patterns and services. In the ACS
model, the basic unit performing a task is a component. It
either controls a simple device or executes astronomical
computations. Each component exposes an interface or
list of capabilities and is individually configured to
determine its exact behaviour inside the system. In our
project the components are organized into subsystems or
packages according to their functional affinity, thus
forming system segments that are independent and
capable to run as stand-alone groups. During the early
development efforts this configuration turned out to be
very valuable for our geographically-spread team. Each
developer, in fact, could focus on one single subsystem,
internal milestone or scheduled test, without being
concerned by the delays in the development of the other
packages.

Supporting three different telescopes is of course the
most challenging goal of the project. This can be reached
by expanding the common code, the part of our project
that can be reused and deployed at all sites, as much as
possible. The station-specific modules, then, consist
essentially in the low-level and no-logic control of the
devices and of the telescope hardware. According to this
approach, a careful design was crucial to ensure that all
the peculiarities of the telescopes fitted with the business
logic at a higher level and with the common parts of the
control software. The Italian telescopes differ in various
features (see Table 1), which can be grouped into two
categories:

 A given telescope functionality is implemented via
different hardware devices at the three
radiotelescopes: they could differ in vendor,
working mode and communication protocol. The
main servo systems of our antennas are an
excellent example of this case; in our software
implementation such devices were modelled
according to an ideal or generic interface that
defines the minimal set of attributes and methods
required by the control logic. Every other

component handles the device adopting this
interface.

 An apparatus is installed at one or two telescopes,
but it does not apply to other antennas. For
example, the SRT and Noto antennas are equipped
with an active surface, while the Medicina one is
not. These categories are handled through
configuration files describing the available
components and functionalities; the system is then
capable of detecting if an operation is allowed
under the present configuration. If the operation is
not fundamental for the running observation, no
error is raised.

Development Workflow
In recent years we have tried to formalize the

development workflow of new components, resulting in
clearer and more maintainable code. As a first step we
decided to add the ability to run components by
simulating the hardware layer whenever possible. This led
us to split the component development into:

 Development of a hardware simulation server
 Development of a standalone hardware

communication library
 Development of the ACS component exploiting the

library
The immediate benefit of this procedure is to have a

simulated hardware environment that permits to run our
tests automatically. We consequently adopted integration
tests to validate component interfaces and regression tests
when fixing bugs in the system. Furthermore, we set up
an infrastructure - both Python and C++ are supported -
that generates a testing skeleton for new components and
runs unit tests collecting xUnit-formatted results.

A new approach was adopted also in the configuration
of the software environment. The full stack deployment
was formalized via code, resulting into the AZDORA
project [3]. It uses virtualization and provisioning
technologies in order to setup and run a fully configured
DISCOS environment, which can be used both for
development and production workstations. This
uniformity among development, testing and production
environments is crucial in assessing the software stability
as much as possible before the on-field production
installation.

The just-described features have made it possible to
adopt Continuous Integration practices in the
development process. A Jenkins server [4] is used in this
case. At present we run nightly builds of the trunk branch
of each telescope and of every still-maintained release.
The proper developer is alerted in case problems are
detected; occasional build or integration errors are fed
into our bug-tracking system. Each build target results
into a ready-to-install package that can be safely used in
production environment. This infrastructure also permits
test automation and to collect the results on the whole
project. In the near future this will give access to new
quality metrics and to the possibility of automatically

MOPGF110 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

332C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Integrating Complex or Diverse Systems

running acceptance tests upon every new code
subscription.

Maintenance Workflow
System bugs are handled with regression tests: each

time a bug is found, the developer writes a test that
reproduces the buggy behaviour, then the fix is not
committed into the patch release until the test executes
correctly.

We also adopt a major.minor.patch nomenclature. The
major version zero (0.y.z) is for initial development, when
anything may change at any time: the public APIs, the
operator input commands and the schedule grammar are
not to be considered stable. New major versions are
issued when non-backward-compatible changes are
necessary and are planned way in advance. Minor
versions are feature releases, so they add functionality in
a backward-compatible manner. We also have non-
production ready versions that get an additional qualifier:
beta and release candidate (RC). The beta versions are to
be tested by advanced users, while the RCs are aimed at
being tested by a group of astronomers.

Release notes are written by developers in a user-
friendly manner and can be found within our
documentation portal [5], while technical release notes
are automatically extracted from the bug-tracking and
features system used to manage the development process
[6].

FUTURE PLANS
The DISCOS user interface is currently mainly

composed of unrelated GUI applications showing textual
information about the main telescope components via
ncurses based panels. Every interaction with the control
software is performed via a command shell that serially
reads telescope commands in a synchronous Read-
Evaluate-Print loop. A remote access to the interface is
offered via VNC connections. This setup is effective for
early operations; in view of the telescopes future activities
we are designing a user-friendly interface in the form of a
web application. This will provide the users with a more
homogeneous experience, efficiently enabling remote
operations. This approach will likely require other
software layers, implementing the authentication and
authorization of the users and new parameters-publishing

systems. This will also lead to a possible integration with
other telescope management software tools, such as the
proposal submissions handling system and the schedule
creator. This work could also technologically enable the
creation of a centralized operation centre for all the
radiotelescopes.

Further development in the near future will involve the
adoption of the most recent ACS version, the adoption of
new technologies for high-rate data transfer, the extension
of test coverage to a bigger portion of the code and the
automation of tests during the build process.

CONCLUSIONS
DISCOS is serving the scientific community by

enabling observations at the Italian INAF radiotelescopes,
and while being still subject to some major changes, it is
running and effective. The growth of the project and its
dissemination among different sites has forced the
adoption of a common development strategy and has led
to the adoption of best practices from the software
industry such as Test Driven Development and
Continuous Integration in order to assess software quality
and to ensure the stability of successive software releases.
This also enables an effective maintenance process, which
is a strong assurance for the coming years of development
and operations.

REFERENCES
[1] G. Grueff et al, “Sardinia Radio Telescope: the new

italian project”, Proc. SPIE vol 5489, p 773-783
(2004)

[2] G. Chiozzi et al., “The ALMA common software: a
developer-friendly CORBA-based framework”, Proc.
SPIE vol 6274, September 2004, p. 205 (2004)

[3] Azdora project github page:
https://github.com/discos/azdora

[4] Jenkins project website: https://jenkins-ci.org/
[5] DISCOS documentation portal:

http://discos.readthedocs.org/en/latest/developer/relea
senotes/releasenotes.html

[6] DISCOS project bug tracking system:
http://www.med.ira.inaf.it/mantisbt/roadmap_page.p
hp

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF110

Integrating Complex or Diverse Systems

ISBN 978-3-95450-148-9

333 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

