EPICS 4 Progress Report

Timo Korhonen (Paul Scherrer Institut)
for the EPICS 4 Collaboration
Outline

• Introduction
• System structures
• Modules
• Data handling and transport
• Interoperability
• Services
• Summary & Outlook
Introduction

- EPICS version 3 structure
 - Flat database of records
 - Enables development of lightweight controls applications
 - Combining data into larger entities is cumbersome

- Scientific applications have different requirements than controls applications
 - Data integration facility-wide, from diverse data sources
 - Beam orbit at a certain pulse from distributed front-ends
 - Facility information in relational databases
 - Large data sets with meta-data and values
 - Detector image with dimensions, trigger conditions, etc.
 - AD converter data with sampling rate, bit depth, environment data

- EPICS 4 aims to bring controls and scientific applications closer
 - Structured data support and new network protocol: pvAccess
 - Services for data processing and aggregation
• Systems can consist of
 – Traditional IOCs, talking both Channel Access and pvAccess
 – Services serving complex data, possibly aggregated from different sources
 • Infrastructure services (RDB), model services, live and archive data, etc.
 – Client applications can use either protocol (CA, PVA) for easier migration
 • But only pvAccess can provide complex data
Structure of EPICS 4

• EPICS 4 is a combination of EPICS 3 and modules providing new features
 – New modules on top of EPICS 3 make a version 4 IOC
 – Services that are not IOCs can be programmed using the additional modules

• Single codebase for IOCs and services
 – One set of APIs instead of separate ones

• EPICS 3 infrastructure can be used as is
 – Huge investment in infrastructure that does its job well
 – Re-implementing all that is not realistic for many sites
 – Add what is missing, keep what works well

• In the future, the additional modules will be merged into the EPICS base release
• Modules that make up the base infrastructure of EPICS 4 (at the moment)
 – Build on top of EPICS base release; at the moment 3.14.12 and higher
 – **pvData**: API manipulating of data structures
 – **pvAccess**: network protocol to transport pvData over the network
 – **pvaSrv**: provides to Version 3 records via pvAccess
 – common utilities for the above, example services, etc.

• Specifications and conventions to complement the above
 • Normative types, specification of general-purpose structures
 • pvAccess protocol specification

• See the project website (epics-pvdata.sourceforge.net) for documentation and code
Structured data support (pvData)

- Data entities can be
 - Scalar, array of scalars, structure, array of structures
 - Structures can contain any of the above
 - Top-level entity with a published name is always a structure
 - APIs for structure introspection and data manipulation

```
structure beamOrbit
    alarm_t alarmStatus
        int severity 0
        int status 0
        string message
    time_t timeStamp
        long secondsPastEpoch
        int nanoSeconds
        int userTag
    structure [] positionData
        string bpmName
        double zPos
        double X
        double Y
        double I
```

Top-level structure contains two structures and one array of structures

Structure containing scalars of primitive data types
Data Transport (pvAccess)

• Network protocol to transport pvData: pvAccess
 – Wire protocol for efficient data transfer over the network
 • Even for high-volume data (e.g. pixel detectors)
 – New operations in addition to put, get and monitor (subscription)
 • ChannelRPC: query with parameters
 • PutGet: put-process-get, get back results after doing I/O operation

• Structure vs. data content
 – Client and server exchange introspection information before exchanging data
 • Data on the wire is not self-describing, for efficiency

• Focus on efficiency
 – Transfer large amounts of data
 – Queuing to support reliable data acquisition
Interoperability of Version 3 and 4

• How to deploy version 4 in existing facilities
 – Co-existence of protocols (Channel Access, pvAccess)
 • V3 Channel Access, V4 pvAccess
 – IOCs can deploy pvaSrv to serve record data and metadata
 • and thus become V4 IOCs
 – pvAccess client can use Channel Access protocol
 • No changes to IOC necessary
Interoperability of services

- Interoperability of services and IOCs depends on
 - Talking the same protocols
 - Introspection facilities
 - Knowing what the structures represent

- Normative Types (NT) enable implementation of generic clients
 - Knowing the structure only does not specify what the data represents
 - Define a set of standard structures
 - Specify also what they represent
 - Receiver can handle the data without knowing where it came from

- Services exchange NT structures
 - e.g. NTURI with query parameters
 - Results returned in a NTTable
Services

• Services provide integration of
 – Different sources of data (aggregation)
 – Data processing and manipulation (modelling, conversions, etc.)
 – Facility data, metadata (device lists, device parameters, etc.)
 – Logbooks, utilities,...

• Service-based architecture has several advantages
 – Modular, single source of data
 – Uniformity of communication IOC to facility services
 – Management: internal changes do not affect clients

• Services, existing or planned
 – Channel Finder service provides device views
 • See next talk (TUCOCB05)
 – MASAR: machine snapshot and retrieve (in MOPPC155, Monday)
 – Gather: Collect data from different sources (IOCs, services)
 – Database services: Serve data from relational databases

• And many others, all talking the same protocol
Summary and Outlook

- EPICS version 4 has taken a firm shape
 - base infrastructure for data handling, pvAccess protocol essentially complete
 - Features are being added: Multicasts, access security, etc.
 - Integration into the base is foreseen
- Working groups continue to build on top of v4 facilities
 - Services
 - Modelling, data manipulation, data integration
 - Utilities for facility management
 - Logbooks, etc., that interface directly with EPICS
 - User interface tools
 - Control System Studio interfaces for services, etc.
- Services are being deployed in production
 - Real-life testing brings maturity to the products
- Consult the project website for information about progress and activities
Thank you for your attention!