
VIRTUALIZATION AND DEPLOYMENT MANAGEMENT FOR THE
KAT-7 / MeerKAT CONTROL AND MONITORING SYSTEM

Neilen Marais, SKA, Cape Town, South Africa

Abstract
To facilitate efficient deployment and management of

the Control and Monitoring software of the South African
7-dish Karoo Array Telescope (KAT-7) and the forthcom-
ing Square Kilometer Array (SKA) precursor, the 64-dish
MeerKAT Telescope, server virtualization and automated
deployment using a host configuration database is used.
The advantages of virtualization are well known; adding
automated deployment from a configuration database, ad-
ditional advantages accrue: server configuration becomes
deterministic, development and deployment environments
match more closely, system configuration can easily be
version controlled and systems can easily be rebuilt when
hardware fails. We chose the Debian GNU/Linux based
Proxmox VE hypervisor using the OpenVZ single ker-
nel container virtualization method, along with Fabric (a
Python SSH automation library) based deployment au-
tomation and a custom configuration database. This paper
presents the rationale behind these choices, our current im-
plementation and our experience with it, and a performance
evaluation of OpenVZ and KVM. Tests include a compar-
ison of application specific networking performance over
10GbE using several network configurations.

INTRODUCTION
The Control and Monitoring (CAM) subsystem of the

current KAT-7 and under-construction MeerKAT tele-
scopes [1] mostly consists of high-level control software
written in Python, talking KATCP (Karoo Array Tele-
scope Control Protocol) [2] over Ethernet to lower level
controllers. While the CAM software is logically fairly
complex, pulling together a large number of distributed
lower-level controllers into a single cohesive telescope,
the use of an Ethernet fieldbus allows the core CAM to be
hosted on a physically centralised set of servers.

Around the end of 2011, KAT-7’s history as an exper-
imental prototype was showing. Work was undertaken to
improve the deployment management from a point where
CAM software was hosted directly on servers that were
maintained by hand. Deployment of a new CAM software
revision was a fraught process, and hardware failure re-
sulted in extended downtime. Only a limited number of
development environments, none which matched the de-
ployed environment closely, was available. We set out to:
have deterministic and repeatable system configurations;
keep versioned configuration history by storing configura-
tion scripts under version control; minimize the number of
manual steps required for deployment; minimize downtime

when deploying software; allow quick revision roll-back;
minimize downtime in case of CAM system hardware fail-
ure; provide better isolation in terms of resource usage be-
tween components that share a physical server; quickly and
easily deploy a number of development environments on a
limited development hardware resource; and deploy devel-
opment testing environments that match deployment envi-
ronments quite closely.

CHOSEN TECHNOLOGIES

Proxmox VE as Hypervisor
Several server virtualization technologies are available;

they may be graded between the extremes of Full Virtual-
ization where a complete virtual computer is emulated and
Virtual Private Servers where a single hypervisor OS kernel
is shared by multiple containers; the kernel has accounting
and isolation features to make each container act like a sep-
arate server without the overhead of hardware emulation or
multiple OS kernels, and no special hardware support is
needed for good performance.

The Debian GNU/Linux based Proxmox VE [3] hyper-
visor supports both kinds of virtualization. The majority of
the CAM system runs on a common GNU/Linux platform
and is deployed to containers. Full virtualization is avail-
able if e.g. an MS Windows server needs to be deployed.
Other desirable features are: our familiarity with Debian-
like systems; positive prior experience by our IT depart-
ment; new containers can be provisioned, stopped and
started quickly; ability to perform zero-downtime backup
snapshots; the simplicity and speed of installing the base
Proxmox hypervisor on a fresh server; the ease of scripting
container management over SSH; Free and Open Source
(FOSS) licensing; an easy to use Web UI for simple server
management and diagnostics. Other advanced Proxmox
functionality, such as live container migration and high
availability clusters, is not currently utilized.

Virtualbox for Workstation Based Virtualization
Developers and commissioners use a mix of Linux, Ap-

ple and MS Windows workstations. To provide a com-
mon local development environment, Toy-KAT VMs that
run the full CAM software stack but simulate only a subset
of the telescope are used. Virtualbox, a FOSS virtualiza-
tion environment that works across multiple platforms, was
chosen for hosting Toy-KAT VMs. Virtualbox is not part
of our production deployments, but experiences with it as a
developer tool have been quite positive.

THCOBA06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1422C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure



Fabric as Deployment Automation Tool
Fabric [4] is a Python SSH automation library allowing

scripted operations defined in Python code to be performed
on a remote machine over SSH. Script logic is defined in
Python, not in typical Unix shell script. Fabric can also be
used to script non-Unix hosts that have an SSH interface. It
requires no central management server; Fabric routines can
be run from any machine that has SSH access to the nodes
being managed. Configuration management systems (e.g.
Puppet, Saltstack) were investigated, but seemed to require
a significant upfront time investment.

The CAM Fabric library is architected around the con-
cept of host roles; each unit of functionality is described
as a role. Each role defines a list of OS level software
dependencies (installed using apt-get), a list of Python li-
brary dependencies (installed from the Python Package In-
dex (PYPI) or the SKA SA Subversion repository), and op-
tionally a Fabric task script to perform steps like config-
uring NFS mount points, configuring cron jobs, initializ-
ing database schemas and, common to most nodes, check-
ing out, building and installing the appropriate version of
the CAM software. The Fabric scripts do not have hard-
coded information about CAM nodes; assignments of roles
to nodes are read from the host database described below,
and are dispatched to appropriate role-handling functions.

Custom Configuration Database
The host configuration database is stored in an INI for-

mat file with specified semantics. Each logical node has a
section keyed by host-name. This section contains all the
information required to deploy a node, including: network
configuration (IPs, gateways, etc.), CAM configuration set-
tings, host roles and whether this is a production node,
physical hosting information, such as whether it is a vir-
tualized node or not, and for virtualized nodes: name of the
host server, hardware resources (i.e. CPUs/RAM, etc.), and
an organization-wide unique container ID (CTID) number.
A unique CTID is required for each container/VM on a sin-
gle Proxmox host; having unique CTIDs allows containers
to be moved to arbitrary Proxmox hosts at any time.

Related nodes can be placed into one or more groups,
allowing operations over a group to be specified with a sin-
gle command. A Python library module that parses the host
file and makes it available as a queryable data structure has
been created. This module is integrated with the CAM Fab-
ric library, allowing a Fabric script to access information
about the node that it is operating on, and allowing Fabric
operations on groups of nodes to be specified on the basis
of configuration database queries.

Performance
Performance and efficiency was one of the reasons why

container-based virtualization was chosen. Initial lab test-
ing showed that virtualized performance was adequate and,
indeed, aggregate CAM server resource utilisation in pro-
duction was little changed by the adoption of virtualization.

However, the soft-realtime [1] design of the CAM subsys-
tem makes it fairly insensitive to server performance, pro-
vided enough aggregate CPU throughput is available.

To test the performance of different virtualization ap-
proaches, the high speed multi-core SPEAD [5, 6] data-
capturing software used by the SKA SA Science Process-
ing subsystem to capture astronomical data produced by the
telescope was benchmarked. This test involves capturing a
high-speed UDP data-stream over a 10 GbE interface with-
out packet loss and assembling it into SPEAD data-heaps
for further processing, stressing the network IO, memory
and CPU performance of a system.

The system under test (SUT) is a SUN FIRE X4150 with
2x Intel(R) Xeon(R) E5450 CPUs, 16 GB RAM and a Gen
1 Myricom Myri10GE 10GbE adaptor, a relatively old sys-
tem with about 50% the per-core performance of modern
Xeon CPUs. It does support Intel VT-x virtualization ac-
celeration. Originally procured as a data-capture machine
for the Fringe Finder development telescope, low level tests
performed at that time showed that this combination of
hardware is limited to a raw receive rate of about 6-7 Gb/s,
even using jumbo frames. A modern Dell R720 server with
a similar Myricom Myri10GE 10 GbE adaptor, capable of
transmitting the test SPEAD data-stream at up to 9.7 Gb/s,
is the sender. The SUT and sender were connected using a
Fujitsu XG2000c switch over copper CX-4 interconnects.

Each test consisted of three runs, sending the same 5 GB
SPEAD stream with 654817 SPEAD heaps to the SUT us-
ing the speadtx command. The speadrx command was
run on the SUT, confirming the number of packets received;
for each configuration the send rate was adjusted down un-
til the SUT could capture all the packets without loss three
times in a row. The receive rate is averaged over the three
consecutive receive runs. CPU utilization was calculated
over a 10 second CPU usage measurement on the host OS
while receiving the SPEAD stream. The host measurement
takes virtualization CPU overhead into account.

The baseline performance was measured using a direct
install of Ubuntu Linux 10.04 LTS 64-bit (kernel 2.6.32-
21.32-server), our current production environment, onto
the SUT. Jumbo frames (MTU 9000) were enabled allow-
ing each SPEAD heap of the test data to be transmitted as a
single UDP packet. Furthermore, the kernel network tuning
parameters in the notes file in [6] were used. These two
optimisations improved the receive rate from around 300
mb/s to the measured 5.5 Gb/s. Using 6 speadrx processes
gave the best results for the 8-core SUT. Other perfor-
mance optimisations were attempted, including the use of
the newest vendor provided NIC drivers , setting network
irq handling CPU affinity to specific CPUs, and tuning
the value of rx-usecs and adaptive-rx (irq-coalescing
settings) using the ethtool command. It was also con-
firmed that write combining and MSI interrupts were en-
abled. These changes made no significant difference to re-
ceive performance.

After the baseline measurements were made, the SUT
was re-installed with the Proxmox VE hypervisor, version

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA06

Control System Infrastructure

ISBN 978-3-95450-139-7

1423 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Table 1: Virtualized Network Performance
Config Rate CPU relative CPU per

(Gb/s) use (%) rate (%) Gb/s (%)

Baseline 5.49 65.8 100.0 12.0
Host 4.80 59.2 87.5 12.3
OVZ excl 4.65 61.2 84.7 13.2
OVZ veth 3.72 21.1 67.8 5.8
OVC venet 3.86 20.3 70.4 5.3
KVM virtio 2.39 60.5 43.6 25.3

3.1, running the Linux 2.6.32-23-pve-109 kernel which is
based on RHEL6. A performance tuning process, as for the
baseline, was performed for each of five configurations that
were benchmarked. In each case it was necessary to set the
MTU on all of the virtual and physical network interfaces
and bridges involved. For the KVM VM the kernel tuning
must also be done on the VM kernel. The configurations
are:

Host Unvirtualized Proxmox VE hypervisor host OS seg-
ment. This is a Debian 6.0 64-bit system running a
specialised Linux kernel and hypervisor utilities.

OVZ excl OpenVZ container to which the hardware 10
GbE device is assigned with exclusive access.

OVZ veth OpenVZ container with a virtual layer-2 Ether-
net device connected via a software layer-2 bridge.

OVZ venet OpenVZ container with virtual layer-3 IP net-
work device connected a software bridge.

KVM virtio Linux Kernel-based VM using a para-
virtualized Ethernet device connected to via a
software bridge, running Ubuntu 12.04 LTS.

All containers were based on the Ubuntu 10.04 LTS 64-
bit template. The speadrx binary from the baseline test
was used for all tests. Ubuntu 12.04 LTS was used in
the KVM VM, since 10.04’s virtio driver had major per-
formance issues; it was unable to receive at more than
about 200 mbit/s, even slower than using an emulated hard-
ware Ethernet device. KVM with exclusive network hard-
ware access could not be tested, since the Blackford 5000P
chipset in the SUT does not support Intel VT-d IO MMU
virtualization. All virtualized environments were assigned
8 CPU cores and 12 GB RAM; the test used less than a
GB of RAM. No other containers or VMs were active on
the Proxmox host when tests were run. Maximum through-
put was always achieved at well below 100% CPU utiliza-
tion, and no single core was fully utilized. A possible ex-
planation is an interaction between kernel packet process-
ing latency and hardware buffer sizes. The unvirtualized
Proxmox Host result is ∼13% slower than the baseline, al-
though it uses only 2% more CPU per unit throughput; that
may caused by extra overhead introduced by the OpenVZ
patches, but that particular kernel may contain additional
modifications relative to the Ubuntu 10.04 LTS kernel.

The OpenVZ excl config only incurs a further penalty of
3%, making it a good option when network performance is

critical but the management and isolation advantages of a
container are desired. The OpenVZ documentation states
that venet networking is faster and lower-overhead than the
veth; while this is strictly true, the absolute difference is
fairly small. Both venet and veth networking are ∼30%
slower than the baseline, or ∼18% slower than the unvir-
tualized Proxmox host. Surprisingly, the CPU usage per
unit of throughput is lower for both veth and venet than for
the baseline, or indeed, any other configuration. The KVM
virtio throughput is less than half that of the baseline, while
using more than twice as much CPU per unit of throughput.

While specific benchmarks might be required for high
speed data capturing applications, it is clear that, even using
older server hardware, any of the tested virtualization con-
figurations would comfortably saturate the 2x1 Gbit Ether-
net ports as planned for MeerKAT CAM[1], validating the
choice of OpenVZ containers for the CAM subsystem from
a performance perspective.

DEPLOYMENT IN PRACTICE
Physical Deployment

The operational CAM subsystem is physically hosted in
two geographic areas separated by about 700 km: the tele-
scope site in the sparsely populated Karoo desert to avoid
radio frequency interference (RFI), and the operations and
engineering site close to Cape Town. The site is connected
to the Cape Town office via the high speed SANReN fibre
network.

The KAT-7 CAM subsystem servers (and equipment
from other subsystems) are hosted in the Compute Con-
tainer (CC) at the Karoo site: a cooled, RF shielded ISO
container with several 19” equipment racks. The CAM
servers consist of 2x Dell R410 dual-socket servers and a
shared NAS for persistent data. The MeerKAT equipment
will be housed in the RFI shielded underground Karoo Ar-
ray Processor Building (KAPB) currently under construc-
tion. The CAM development environments are hosted on
set of similarly specced servers and some older Dell and
Sun PC servers hosted at the Cape Town office.

The servers at both sites are meant to be generic and
easily replaceable. An additional server will be deployed
to the Karoo to serve as a KAT-7 cold-spare, and the
MeerKAT design also calls for cold-spares. The servers
all run the Proxmox VE hypervisor, allowing the rapid de-
ployment of arbitrary logical functions to any server.

The CAM operator workstations (27” iMacs) and dis-
play servers (generic PCs) are located in a dedicated control
room at the Cape Town offices. Secondary operator work-
stations are hosted in the Control and Monitoring Con-
tainer (CMC), another shielded ISO container on-site, and
the Meysdam Karoo Operator Center about 50km from the
core site.

Logical Deployment
The functions of the CAM systems are deployed to logi-

cal nodes; CAM logical nodes are hosted as OpenVZ con-

THCOBA06 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1424C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control System Infrastructure



tainers on the physical hardware described above. Opera-
tor workstations are mostly generic, requiring only basic
software such as web browsers and SSH clients. CAM
functions also depend on central network services such as
a Subversion server managed by the IT dept in Cape Town.

The logical architecture is fully defined by entries
in the configuration database. Deployment involves
two steps: provisioning of nodes, and node configura-
tion. Nodes are provisioned by creating and assigning
hardware resources to a container on a host server, and
configuring its networking using a Fabric command such
as: fab proxmox.create_containers_by_group:

karoo_system_nodes,700. This single command will
provision all the containers of the production telescope
by running commands on the appropriate Proxmox hosts
using information in the configuration database. The
700 is a version prefix added to the CTID stored in the
database, allowing multiple versions of a deployment to
co-exist; versions are switched by stopping and starting
the appropriate container versions. After a deployment
old containers are kept until the quality of the most recent
revision has been proven.

Node configuration involves running software
installation and configuration scripts on the vir-
tual nodes, using a command such as: fab

kat_deploy.install_nodes_by_group:karoo_

system_nodes,karoocamv7-requirements.txt;
The requirement files are version controlled along
with the rest of the CAM software. The specific ac-
tions performed on each node are determined by the
roles assigned in the configuration database. The
karoocamv7-requirements.txt indicates the file from
which the software requirements should be read, defining
the versions of all CAM and external Python packages to
be installed.

Persistent Data
Persistent production data is stored on a SAN device

hosted in the Karoo CC, shared with the Science Processing
subsystem, and is exposed as NFS exports. Persistent CAM
data includes: Postgres telescope management databases,
sensor data archives, component log files and observation
logs. Containers mount the appropriate NFS exports for
their roles. While the containers are disposable (can be
re-built in ∼10 minutes), the persistent data is mirrored to
the Cape Town site every hour. Inter-version compatibility
is affected by changes in database schema, but the CAM
schema has been fairly stable over the last two years.

DEVELOPMENT ENVIRONMENT
Development is done on fully simulated systems (i.e.

hardware devices are replaced by software simulators) and
hardware integration on a lab system where some simula-
tors are replaced with representative hardware. Primary de-
velopment proceeds on workstation-hosted Toy-KAT sys-
tems. Running on a single virtual node, aspects of the com-
plete telescope cannot be tested on a Toy-KAT; hence each

developer has a set of development containers. They are in-
cluded in the configuration database and can be created and
destroyed by the owning developer using the same Fabric
scripts as for the production nodes. Furthermore there are
two shared virtual production environments (VKaroo and
DevKaroo) where production network and node configu-
rations (down to IP addresses) are emulated using virtu-
alized networking, allowing complete production deploy-
ment processes and configurations to be tested. VKaroo
runs the current production software revision, while De-
vKaroo runs the most recent development version.

Adopting virtualization has allowed cost saving by al-
lowing over-subscription of development servers. Previ-
ously, a physical server had to be dedicated to each node
of a development system. Since each hardware node has
enough CPU power to run several development environ-
ments simultaneously and since most development envi-
ronments are only used for short periods of time, dozens of
environments can be hosted on four development servers.

EXPERIENCES AND CONCLUSION
While reliable deployment on-site is the main reason

why virtualization and automated deployment were orig-
inally considered, the most regular advantage is the abil-
ity to easily deploy realistic development/testing environ-
ments, and quickly switch between software versions by
switching containers. We have found the need to add con-
firmation steps for operating on production nodes and to
manage deployment steps depending on external internet
services by using local mirrors (PyPi and Ubuntu reposito-
ries).

The goals set out in the introduction have largely been
met. Future work includes: deployment to fresh containers
in the Continuous Integration process and running full scale
integration / functional tests (that take hours to complete)
on them nightly, and automatic daily building of Toy-KAT
VMs. Work on the MeerKAT deployment should process
should largely see more of the same, although the network
configuration will be more complex [1].

REFERENCES
[1] L. van den Heever, “MeerKAT Control and Monitoring

- Design Concepts and Status”, SKA SA, October 2013,
ICALEPCS 2013 Proceedings.

[2] S. Cross et al., “Guidelines for Communi-
cation with Devices”, SKA SA, July 2012,
http://pythonhosted.org/katcp/_downloads/

NRF-KAT7-6.0-IFCE-002-Rev5.pdf

[3] Proxmox Server Solutions GmbH, “Proxmox VE”,
http://pve.proxmox.com

[4] C.V. Hansen and J.E. Forcier, “Fabric”,
http://docs.fabfile.org/

[5] J. Manley, et al., “SPEAD: Streaming Protocol for
Exchanging Astronomical Data”, CASPER, June 2012,
https://casper.berkeley.edu/wiki/SPEAD

[6] A. Barta, “SPEAD”, https://github.com/ska-sa/spead

Proceedings of ICALEPCS2013, San Francisco, CA, USA THCOBA06

Control System Infrastructure

ISBN 978-3-95450-139-7

1425 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


