
A MESSAGING-BASED DATA ACCESS LAYER FOR CLIENT
APPLICATIONS*

James Patrick#, Fermilab, Batavia, IL 60510, U.S.A.

Abstract
The Fermilab Accelerator Control System [1] has

recently integrated use of a publish/subscribe
infrastructure as a means of communication between Java
client applications and data acquisition middleware. This
supersedes a previous implementation based on Java
Remote Method Invocation (RMI). The RMI
implementation had issues with network firewalls,
misbehaving client applications affecting the middleware,
portability to other platforms, and lack of authentication.
The new system uses the RabbitMQ implementation of
the AMQP messaging protocol and broker architecture.
This decouples the client and middleware, is more
portable to other languages, and has proven to be much
more reliable. A Java client library provides for single
synchronous operations as well as periodic data
subscriptions. This new system is now used by the
synoptic display manager application as well as a number
of new custom applications.

FERMILAB CONTROL SYSTEM
The Fermilab accelerator control system, generally

referred to as ACNET, is a unified system controlling all
accelerators in the complex. This includes the primary
accelerator chain delivering beam to physics experiments,
and well as test facilities for future accelerators based on
superconducting RF cavities. It is a three tiered system
with front-end, central service, and application layers.
Front-end computers directly communicate with hardware
over a wide variety of field buses. Console applications
provide the human interface to the system. Central service
computers provide general services such as a database,
alarms, application management, and front-end support.
Communication between the front-end and central layers
is carried out using a connectionless protocol also named
ACNET over UDP. Data from front-ends is then
delivered by the central layer to applications by either a
shared memory protocol for C-language applications that
run within a console, or the Java Remote Method
Invocation (RMI) protocol for Java language applications.

Figure 1. Architecture of the Fermilab Control System.

A goal of the control system is to allow applications to

be run from anywhere by a properly authenticated user.
The ACNET communication protocol is not suitable for
use outside of the control system network. See Fig. 1.

The Java RMI implementation had several significant
issues. The central layer Data Acquisition Engines
(DAEs) deliver data to clients by a callback mechanism.
The port and network interface used could vary so it was
challenging to develop firewall rules for systems outside
the core network. The system did not have a proper load
balancing mechanism to distribute data acquisition jobs
among the DAEs. There was no failover mechanism if a
DAE stopped functioning. And there was no way to
authenticate users running application programs on non-
control system computers.

To address these issues, a system was developed

between the application and DAE simplifying firewall
issues and requiring authentication for connections. Also
a prototype implementation was done using the ZeroC

was decided to try the publish/subscribe messaging
paradigm, and use a system that supported clients in
multiple languages unlike the Java Messaging Service
(JMS).

AMQP AND RABBITMQ
The AMQP (Advanced Message Queuing Protocol) is a

standard that defines a publish/subscribe messaging
system based on a central broker architecture. Producers
send messages and consumers receive them. Messages are
sent to exchanges defined in the broker and routed to
queues based on an associated key or topic. The

standard defines several possible strategies for the
message routing. Consumers bind to a queue and may
then receive messages from that queue.

The advantage of this architecture is that producers and

computer host, they just need to know the message
routing key or topic. The infrastructure also supports
recovery of broken connections if a broker is restarted.
Firewalls need only pass traffic for a single port for the
few broker machines. It also supports clusters of brokers
with load balancing and failover.

A disadvantage of this architecture is the additional
latency incurred in going through the broker for all data
transfers. The applications that use the system do not
perform time critical control operations so this is not a
problem. Another issue has been the evolution of the

*Fermilab is operated by the Fermi Research Alliance under contract to
the US Department of Energy
#patrick@fnal.gov

MOPPC149 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

460C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

AMQP standard. Prior to version 1.0, the standard defined
both the wire protocol and the broker architecture. AMQP
1.0 is simpler, doing away with exchanges and queues
and primarily defines the wire protocol. This work uses
AMQP versions 0.8 and 0.9.1. The implementation
selected is RabbitMQ [2]. This includes a broker
implementation written in the Erlang language as well as
client APIs in several languages including Java.
RabbitMQ is an open source product now owned by
VmWare. The RabbitMQ broker is relatively compact
and by default does not support other protocols. Its
performance is excellent compared with other
implementations. RabbitMQ plans to support the pre-1.0
versions of the AMQP protocol indefinitely.

USAGE IN ACNET

The control system is configured with three RabbitMQ

brokers each connected to two data acquisition engines.
DAEs subscribe to a topic associated with new data
acquisition requests. The application client creates a new
dedicated exchange/queue for a request, and then
publishes message to the DAE via

a randomly selected broker. Requests
can be for single readings or settings, or a subscription for
periodic data from some device or set of devices. The
DAE performs the operation on behalf of the client and
sends status and data back to the client via the dedicated
exchange.

We do not use the broker clustering feature in AMQP
as attention has to be paid to the distribution of and
resources required by data acquisition jobs running on the
DAEs. Primitive load balancing and clustering is done by
choosing a random broker for the init message. The low
level client software sets up a heartbeat mechanism
between the client and DAE. If the client stops receiving
data for some timeout period, it will automatically restart
the data acquisition job on a different DAE. If the DAE
detects the client is no longer present, it will stop the data
acquisition job and release the associated resources. Thus
the system can deal with a missing broker and/or DAE
and jobs will transparently survive restarts of either.

To authenticate users, a standard Fermilab Kerberos
ticket is passed from the client to the DAE as a property
in the message header. The DAE validates the ticket and
determines if the user is authorized to access the control
system, and has the appropriate privileges to set devices if
requested. Although AMQP supports authentication of
broker connections we do not use this feature. SSL
connections to the broker are also supported by AMQP
but again we do not currently use them.

Structured messages are serialized using the ACNET
Protocol Buffer system [3] rather than AMQP system.
This is done to be consistent with other message passing
functionality in the control system.

The DAEs make available internal statistics and
information on the jobs they are running via the Java
Management eXtensions (JMX) mechanism. A set of web
pages provides an overall summary of the system and can

provide detailed information on each job. The RabbitMQ
broker also exposes management information via http
queries, development of web pages to display this
information customized for our usage is in progress.
 ACNET APPLICATIONS

The synoptic display system in ACNET [4] now uses
the RabbitMQ based data acquisition exclusively. These
are displays generated by a drag and drop builder. Usage
of this package has dramatically increased in recent years.
Also a standalone client library in Java for custom
applications is available. A variety of applications have
been written using that including camera data acquisition
and analysis, beam steering for the Fermilab linac, and a
general waveform plotter. This standalone library is
trivially accessible from Matlab, and several substantial
applications have been written using that.

EXPERIENCE
This messaging system has proven to be much more

robust in transferring data between DAEs and clients than
the previous Java RMI based system. The primary issues
with that system are resolved. Most problems encountered
have been with errors in our implementation. The core
RabbitMQ system has worked extremely well. As usage
of the system has increased, we have experienced
problems with excessive load on the DAEs and/or
brokers. As data acquisition requests may contain a wide
range in number of devices, data sizes, and rates, a better
load balancing system is needed than randomly
distributing jobs to brokers. Work on this is in progress.

CONCLUSIONS
A publish/subscribe messaging system based on

RabbitMQ has been implemented for the Fermilab
accelerator control system ACNET to transfer data
between middle layer processes and high level
applications. This provides a robust, secure, firewall
friendly method of accomplishing this and is a great
improvement over the previous method based on Java
RMI.

ACKNOWLEGEMENTS
The original implementation of this messaging layer

was done by Andrey Petrov.

REFERENCES
Cahill, K., et al,

-
124 FERMILAB-PUB-08-605-AD.

[2] RabbitMQ: http://www.rabbitmq.com
[3] R. Neswold and C. King Generation of Simple,

Type-Safe Messages for Inter-Task Communication,
, Kobe, Japan, October 2009,

TUP024, p. 137 (2009);
http://accelconf.web.cern.ch/accelconf/icalepcs2009/
papers/tup024.pdf.

October 2007, ROPB03 (2007).

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC149

Software Technology Evolution

ISBN 978-3-95450-139-7

461 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

