
CSS SCAN SYSTEM*

K. Kasemir, X. Chen, ORNL, Oak Ridge, TN 37830,
E. Berryman, MSI, Lansing, MI 60439, U.S.A.

Abstract
Automation of beam line experiments requires more

flexibility than the control of an accelerator. The sample
environment devices to control as well as requirements
for their operation can change daily. Tools that allow
stable automation of an accelerator are not practical in
such a dynamic environment. On the other hand, falling
back to generic scripts opens too much room for error.
The Scan System offers an intermediate approach. Scans
can be submitted in numerous ways, from pre-configured
operator interface panels, graphical scan editors, scripts,
the command line, or a web interface. At the same time,
each scan is assembled from a well-defined set of scan
commands, each one with robust features like error
checking, time-out handling and read-back verification.
Integrated into Control System Studio (CSS)[1], scans can
be monitored, paused, modified or aborted as needed. We
present details of the implementation and first usage
experience.

BEAM LINE EXPERIMENTS
A beam line control system interfaces to various

devices, for instance motors, temperature controllers,
detectors. Beam line users need to control these devices at
a safe distance from the beam. Experiments further
necessitate automation, since manual control over many
hours of operation would be impractical. Finally,
experiment readings need to be saved and later analyzed
for scientific information.

The Python scripting language offers access to devices
via Process Variables (PVs) in the Experimental Physics
and Industrial Control System (EPICS)[2]. Especially for
simple experiments, it is tempting to combine automation
logic, data acquisition, and associated user interface
within one piece of scripted software. It is easy to create
such scripts from scratch. They can be modified as needed
to include new automation requirements.
The monolithic script approach has considerable

disadvantages: Ad-hoc scripts tend to only function
satisfactorily until there are errors, for example network
issues or devices responding in unexpected ways. Such
potential errors tend to be overlooked when writing “a
simple script”. The experiment may often continue, only
for users to learn much later that the acquired data is of no
use.

Standalone scripts typically run until they finish. There
is no way general to monitor their progress, to pause or
abort them in a graceful manner. Such a basic script may
close the beam line shutter at the end of an experiment,
but only if the script is allowed to execute until its last
line. If the user or an error aborts the script earlier, the
beam line shutter may accidentally remain open!

From a software engineering standpoint, a disjunctive
collection of custom, standalone scripts will also be hard
to maintain in the long run.

CSS SCAN SYSTEM
In 2011, we became aware of the “Scan Engine” design

by the Software Services Group (SSG), Advanced Photon
Source, Argonne National Laboratory. It proposes a
robust, modular execution engine, decoupled from the
user interface. We implemented its basic design for the
CSS framework, resulting in the following components.

Scan Server
The CSS Scan Server executes ‘Scans’. Each Scan is a

list of commands, including:
• SetCommand: Sets a Device to a value, i.e. writes to

a PV. By default, it waits for the PV to return a
matching value, within a configurable tolerance. It
supports devices where set point and read-back have
separate PVs. For EPICS, a “put-callback” operation
is supported.

• LoopCommand: Steps a PV from an initial to a final
value, with configurable step size. Each step is
similar to a SetCommand.

• WaitCommand: Can wait for a PV to reach a certain
value, increment by a certain amount and more.

• LogCommand: Add current values of PVs to the scan
log.

• DelayCommand: Simply waits for a certain time.
• ScriptCommand: Executes Jython code.
The SetCommand illustrates the difference between a

rudimentary script that writes to a PV, and a more robust
system that includes error handling and read-back
verification. All waiting commands support time-outs.

When a required functionality is not covered by the
basic command set, the ScriptCommand can invoke
Jython code, which allows use of a versatile programming
language. Site-specific commands can be added via Java-
based extension points.

The CSS support for PVs can interface to EPICS,
including V4[3], as well as simulated PVs for testing. The
Scan Server is packaged as a CSS/Eclipse console
application. Under Linux, we typically execute it as a
service with ‘telnet’ access for life cycle management and
debugging.

The Scan Server is meant to only perform experiment
automation. Via PVs, it may control the experiment data
acquisition, but it is not meant to perform the actual data
acquisition. Nevertheless, the Scan Server can perform
basic PV logging, to track the progress of a scan or for
very simple data acquisition. The log persistence layer is
based on an extension point, with a default
implementation for Apache Derby.

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB01

Experiment Control

ISBN 978-3-95450-139-7

1461 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Scans are submitted, monitored and controlled via a
RESTful web interface, i.e. from a web browser or other
networked programs.

Scans are executed in the order of submission, which
allows users to schedule follow-up experiments while in
an ongoing experiment. A scan can be paused and
resumed between commands, or aborted at any time.

The scan server can be configured to execute ‘pre-‘ and
‘post-scan’ commands before and after each scan. For
example, it could open respectively close a beam line
shutter for each scan. The ‘post-scan’ commands will be
executed no matter if the scan finishes successfully, or
stops from an error or manual abort.

Scan Editor
Scans are submitted as an XML-formatted list of

commands to the Scan Server. The Scan Editor is a CSS
tool for creating and modifying Scans, shielding users
from the underlying XML format. Commands are added
to a scan via drag-and-drop, and then their properties are
configured within the editor. Online help describes the
functionality of each command. Scans can be saved to
files and later re-loaded.
The Scan Editor can submit scans to the Scan Server for

execution, or download previously submitted scans,
including scans submitted from other tools. When a
submitted or downloaded scan is under execution, the
scan server indicates the currently executed command.

Figure 1: Scan Editor.

Scan Monitor
The CSS Scan Monitor lists all scans on the server.

(Fig. 2). Users can pause, resume, abort scans, open a scan in the
Scan Editor, or view the logged data of a scan in the Scan
Plot.

Figure 2: Scan onitor.

Executing scans are displayed with accumulated run
time and an estimate for their finish time.

Scan Plot, Scan Data Table
These CSS tools can display the logged data of a scan

in either a plot or as a table of values, which can be
exported to a file.

BOY Integration
CSS BOY [4] is a tool for creating graphical user

interfaces that display and control PVs. JavaScript or
Jython code attached to the displays can read data from a
display, create a scan and submit it, see Fig. 3 for an
example.

Figure 3: BOY cript .

This functionality is used extensively to create operator
interfaces for routine scans. Beam line visitors can thus
configure and submit a scan from the same operator
panels that they use to manually control the beam line
devices.

EXAMPLES
Computer Tomography (CT) Scan

Figure 4: BOY Panel for CT can.

Neutron computer tomography is a routine task at the
ORNL CG-1D beam line. It involves rotating a sample for
about 180 degrees in small steps, taking an image at each

FRCOAAB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1462C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

step [6]. A BOY user interface, Fig. 4, allows
experimenters to configure the desired rotation, camera
exposure, and details of the saved image.

When users push the user interface “Go” button, a
script similar to Fig. 3 reads the desired rotation start- and
end-angles from the display panel to create a
LoopCommand. It adds SetCommands to control the
camera, eventually submitting a scan similar to the one
shown in Fig. 1.

Instead of submitting the scan for execution, the CT
Scan BOY panel also allows to first submit a scan for
simulation. The simulation feature of the Scan Server
returns an estimate of the required execution time. This is
helpful when users need to balance desired image
intensity and CT detail against the resulting execution
time, which is typically 12 hours and longer.

In this CT example, the scan itself is very simple, easily
handled in a standalone script. The advantage of the CSS
scan system lies in the seamless integration of camera
control, beam line motors, and scan control into one user
interface, Fig. 5.

At the same time, the execution of typically long
running scans is decoupled from the user interface. Scans
can continue undisturbed for many hours while the user
closes the operator interface, logs out of the computer.
Later, another user may log in and open the operator panel
to review the scan progress.

Figure 5: Overall CT Beam Line Operator Panel. Note CT
section from Fig. 4 on lower right.

Edge Fit
A routine beam line task is scanning a variable, often a

motor, over a value range, logging some detector signal,
and finally locating an ‘edge’ in the logged data.

Fig. 6 shows a BOY panel for configuring the desired
scan and log parameters. Operators can enter arbitrary PV
names, or select from lists of pre-defined PV names. At
each step, the scan can be instructed to simply wait for a
fixed time, await a configurable number of neutron
counts, or meet other beam-line specific conditions.

The submitted scan will use Loop, Wait and
LogCommands to collect the data, shown in Fig. 6 as a
blue line. To perform the edge fit, a ScriptCommand
invokes suitable Jython code, writing the result to PVs.
These are displayed at the bottom of Fig. 6 as the “Edge

Position” and “Width”; they are also indicated via red
vertical plot markers.

Figure 6: Scan with dge it.

Table Scan
In a table scan, users provide a list of values, for

example a list of X/Y coordinates. It is configured via a
table as shown in Fig. 7. The values in columns “X”, “Y”,
and following represent the desired values for devices of
this name. The scan server supports alias names, so a
short device name like “X” can internally be translated
into the actual PV name. The generated scan will start
with SetCommands to move all devices to the values
listed on the first line, followed by commands to move all
devices to the values on the next line and so on.

Figure 7: Overall CT Beam Line Operator Panel. Note CT
section from Fig. 4 on lower right.

The “Wait For” and “Value” columns allow entering a
condition on which the scan will wait via suitably
generated WaitCommands before executing the
commands for the next row.

Such a tabular representation of a scan can be
especially useful if for example X/Y coordinates are not
based on simple loops, but generated by other tools.
Written as a spreadsheet-type, comma-separated table, the
coordinates can be loaded into the Table Scan editor and
submitted to the Scan Server.

MATLAB
The same Java code used within the previously

described CSS tools is also accessible from
MATLAB [7].

Proceedings of ICALEPCS2013, San Francisco, CA, USA FRCOAAB01

Experiment Control

ISBN 978-3-95450-139-7

1463 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

This allows advanced MATLAB users to for example
compute coordinates for an elaborate X/Y scan, then
submitting them to the Scan Server as a list of
SetCommands.

MATLAB can fetch logged Scan data, and then use its
sophisticated numeric algorithms to perform fits beyond
the basic example from Fig. 6.

DISCUSSION
The decoupling of direct device access and user

interface from the scan server is key to its robustness. All
device access is via network PVs. The scan server itself
has no graphical user interface. Scan execution can be
monitored and controlled via networked user interfaces
that are opened and closed as desired.

This separation of execution from the display allows the
scan to continue without a user interface. It is also
possible to open several user interfaces, for example one
on the beam line and one in another office, to monitor the
same scan.

A CSS BOY display can provide seamless integration
to the end user who presses a “Start” button to initiate a
scan, then observing its progress on the same display.
There is, however, added effort for the control system
engineer. The “Start” button requires a script to submit a
suitable set of commands to the scan server. To report
progress, the scan server cannot for example draw the
path of an X/Y scan directly on the operator screen.
Instead, the scan server needs to publish the X/Y positions
of a progressing scan by writing to waveform PVs or the
scan log, which may then be displayed in the user
interface.

The Scan Server executes a set of well-tested
commands, mostly Set, Wait, Loop, Log. Special
requirements can be met via the ScriptCommand and
Jython code. Such Jython code must be created with care.
It is unlikely to ever be as well tested for robustness as the
build-in scan commands, but the ScriptCommand was
necessary to support for example an Edge Scan.

Jython, the Java-based implementation of Python, is an
excellent general programming language, but it does not
support the full numeric computing functionality of
NumPy [8]. Instead, the Scan System includes CSS
NumJy, a basic implementation of the NumPy array
support, similar to the SciSoft Dataset of GDA [9].

ONGOING WORK
While a seamless user interface for the scan system is

possible, the intermediate steps of writing to PVs or the
log results in additional effort for the engineer who
creates these operator interfaces.

Recent work on the PVManager[5] simplifies the
submission of scans. Instead of requiring BOY script
code, basic 1-dimensional scans can be submitted by
invoking a PVManager service. Future work will include
adding the ability to register scan configuration files “on-
the-fly” as PVManager services.

A prototype EPICS V4 network server was added to the
Scan Server. This allows V4 network clients, including
BOY, to display data from the scan log as a table or in
plots based on PVManager expressions, again without
need for scripts.

SUMMARY
The CSS Scan Server is a modular, robust building

block for experiment automation. The Scan System has
been in successful operation at an ORNL beam line since
January 2013 [6].
We would like to thank Claude Saunders and Tim

Mooney for valuable information on the original SSG
Scan Engine design.

REFERENCES
[1] K. Kasemir, “Control System Studio Applications”,

ICALEPCS, Knoxville, TN, Oct. 2007.
[2] T.T. Nakamura, K. Furukawa, J-I. Odagiri, N.

Yamamoto, “Development of the Software Tools
Using Python for EPICS-Based Control System”,
ICALEPCS, Knoxville, TN, Oct. 2007.

[3] L.R. Dalesio et al, “EPICS V4 Expands Support to
Physics Application, Data Acquisition, and Data
Analysis”, ICALEPCS, Grenoble, France, Oct. 2011.

[4] X.H. Chen, K. Kasemir, “BOY, A Modern Graphical
Operator Interface Editor and Runtime”, PAC2011,
Brookhaven, NY, March 2011.

[5] G. Carcassi, “pvManager”, EPICS Meeting,
Brookhaven, NY, Oct. 2010.

[6] X. Geng, X. Chen, K. Kasemir, “First EPICS/CSS
Based Instrument Control and Data Acquisition
System at ORNL”, ICALEPCS, San Francisco, Oct.
2013.

[7] MathWorks MATLAB software,
http://www.mathworks.com/products/matlab

[8] NumPy, scientific computing in Python,
http://www.numpy.org

[9] GDA, Software for Science, http://www.opengda.org

FRCOAAB01 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

1464C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Experiment Control

