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Abstract
Measurements demonstrate that the kicker impedance

dominates along the RCS. Based on a newly developed the-
ory, the impedance is measured by observing the beam-
induced voltages at the ends of power cable of the kicker.
Toward one mega-watt goal, it is essential to take advantage
of tune manipulations and the space charge damping effect.
A reduction scheme of the kicker impedance is proposed to
pursue the ultimate goal at the RCS.

INTRODUCTION
There are the accelerators aiming at producing mega-watt

class beams in the world [1, 2]. One of such facilities is
the 3GeV rapid cycling synchrotron (RCS) in Japan Proton
Accelerator Research Complex (J-PARC) [1]. In order to
extract the high intensity beams from the RCS, eight dis-
tributed type kicker magnets are installed in the RCS [3].
On the other hand, in order to steadily circulate the high

intensity beams in the RCS, it is important to precisely esti-
mate the coupling impedances along the ring. In the RCS,
the coupling impedance has been lowered except the kicker
impedance [4]. When we apply Sacherer’s formula [5], the
beam should become unstable around 100 kW, where the
chromaticity ξ is fully corrected in the entire energy. Ac-
cordingly, it has been concerned that the kicker impedance
disturbs realizing the high intensity beam in the RCS.
Contrary to our expectation, the beam at last becomes

unstable beyond about 300 kW with the fully chromaticity
correction. This means that a significant gap exists between
the theoretical prediction and the measurement results.

The situation has goaded us to review the estimation of the
kicker impedance from theoretical and experimental points
of view. In the process, the authors have found that the
causality condition is not satisfied in Nassibian’s formula [6,
7] describing the impedance of the kicker where all terminals
are connected to the matched resistors.

Accordingly, a theory has been developed to estimate the
kicker impedance. The theory describes the impedance,
where the terminals of the kicker magnet are connected
to the power cables [8] as well as to the matched resistors
[9]. The theoretical results well reproduce the measurement
results by using the standard wire-measurement scheme [10].
Moreover, the theory successfully relates the beam-induced
voltages at the ends of the cables to the kicker impedance.
One advantage of developing the theory is to enable to find
the kicker impedance by letting a beam pass through the
kicker and by measuring the beam-induced voltages at the
ends of the cables.

At the same time, simulation studies have been progress-
ing. The beam simulation code ORBIT, which is originally
developed in SNS [2] for storage rings, has been upgraded by

J. Holmes in order to incorporate the Lorentz-β dependence
of the kicker impedance into the code. The precise estima-
tion of the impedance brings the code into action, especially
in the serious condition as in the RCS.

Before we discuss a strategy to accomplish one mega-watt
beam, let us review how to produce the kicker impedance
from the beam-induced voltage.

KICKER IMPEDANCE
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Figure 1: A schematic picture of the kicker magnet.

A schematic picture of the kicker magnet is shown in
Fig. 1. The kicker magnet has four terminals at the corners.
The right front and the left back terminals of the kicker are
terminated by the short plates, respectively. The short plates
double the excitation current by superposing the forward and
backward currents, when a beam is extracted from the RCS.
The right back and the left front terminals are connected to
two-parallel coaxial cables, respectively.
The formulae of the kicker impedances are described as

follows,

ZL = Z (0)
L (x0 = x = 0) + Z (1)

L (x0 = x = 0)

+ Z (crr )
L (x0 = x = y = 0)

' Z (0)
L (x0 = x = 0) + Z (crr )

L (x0 = x = y = 0), (1)

Zx =
∂2ZL (x0, x, y = 0)

k∂x0∂x

�����x0=x=0

'
∂2Z (1)

L (x0, x, y = 0)
k∂x0∂x

+
∂2Z (crr )

L (x0, x, y = 0)
k∂x0∂x

������x0=x=0
,

(2)

where ZL and Zx are the longitudinal and the horizontal
impedances, respectively, x0 and x are the horizontal posi-
tions of the source and the witness particles, respectively,
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and k is wavenumber. The impedances Z (0)
L and Z (1)

L are
approximated in low frequency region : f < cβ/(2πL) as

Z (0)
L (x0, x) = 2

∞∑
m=1

(−(−1)m + 1 + cos
mπ(ρp + a)

2a

− cos
mπ(−ρp + a)

2a
)
sin mπ (x+a)

2a
mπ

× [
cβθ1Zc,c (e j (k+ωθ1)L − 1)F3

q(1 + cβθ1) cosh
√

m2π2

4a2 + ω2θ21 − k2 β2b

+
cβθ1Zc,c (e j (k−ωθ1)L − 1)F4

q(1 − cβθ1) cosh
√

m2π2

4a2 + ω2θ21 − k2 β2b

+
jωLM+

cosh
√

m2π2

4a2 +
k2

γ2
b
], (3)

Z (1)
L (x0, x) = −2
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m=1

(−(−1)m − 1 + cos
mπ(ρp + a)

2a

+ cos
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)
sin mπ (x+a)

2a
mπ
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√
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4a2 + ω2θ23 − k2 β2b
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√
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4a2 + ω2θ23 − k2 β2b

−
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√
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γ2
b
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L f

a
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−
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M− =
(Mr (x0) − M l (x0))

2(1 − c2 β2(Lk − Mb )Ck )
, (7)

M+ =
(Mr (x0) + M l (x0))

2(1 − c2 β2(Lk + Mb )Ck )
, (8)

θ1 =
√

(Lk + Mb )Ck , θ3 =
√

(Lk − Mb )Ck , (9)

Zc,d =

√
Lk − Mb

Ck
, Zc,c =

√
Lk + Mb

Ck
, (10)

k ′xm =
mπ
2a

, kxm =

√
k ′2xm +

k2

γ2
, (11)

k ′ym =
√

k ′2xm + k2(1 − ε ′µ′ β2), (12)

Cr (x0) = −
1

2(B − b)
(1 −

Mr (x0) + M l (x0)
Lk + Mb

), (13)

where Ck is the capacitance per a unit length of the kicker,
Lk and Mb are the self and the mutual inductances per a unit
length of the coils, Mr (x0) and M l (x0) are the induction
coefficients per a unit length between the beam and the right
and the left coils, respectively, β and γ is the Lorentz-β and
γ, respectively, and L f is the total length of the ferrite in the
magnet. The functions F1(ω),F2(ω),F3(ω) and F4(ω) are
obtained by solving the boundary conditions:

(Zc,d − Zcable)F1 − (Zc,d + Zcable)F2

− (Zc,c − Zcable)F3 + (Zc,c + Zcable)F4

= −(M− + M+)qcβ − ZcableqCkc2 β2(M− + M+), (14)
− Zc,dF1 + Zc,dF2 − Zc,cF3 + Zc,cF4

= qcβ(M− − M+), (15)
Zc,de jωθ3LF1 − Zc,de− jωθ3LF2

− Zc,ce jωθ1LF3 + Zc,ce− jωθ1LF4

= −(M− + M+)qcβe− jω
L
cβ , (16)

− (Zc,d + Zcable)e jωθ3LF1 + (Zc,d − Zcable)e− jωθ3LF2

− (Zc,c + Zcable)e jωθ1LF3 + (Zc,c − Zcable)e− jωθ1LF4

= (M− − M+)qcβe− jω
L
cβ

− Zcable(M− − M+)qCkc2 β2e− jω
L
cβ , (17)

where

Zcable =
1
2

√
Lcable
Ccable

×

[
1 +

−

√
Lcable
Ccable

+2RT√
Lcable
Ccable

+2RT

e− jω2
√
CcableLcablelcable

1 +
−

√
Lcable
Ccable

+2RT

−

√
Lcable
Ccable

−2RT

e− jω2
√
CcableLcablelcable

], (18)

Lcable =
Rcable

jω
+ Lcable,Ccable =

G
jω
+ Ccable, (19)

Lcable is the inductance per a unit length of the cable, Ccable
is the capacitance per a unit length of the cable, Rcable is the
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resistivity per a unit length of the inner and outer conductors
in the cable and G is the admittance per a unit length of the
insulator between the conductors. Equation (18) deals with
the case that two-parallel cables are connected at the end and
terminated with the device having the impedance RT (ω) (if
the terminal is open as in the present kicker, RT is identical
to infinity.).

Ω Ω

Figure 2: The theoretical (red) and the measurement (blue)
results of the longitudinal impedance ZL for β = 0.54 and
the theoretical one for β = 0.97 (yellow).

Figure 3: The theoretical (red) and the measurement (blue)
results of the horizontal impedance Zx for β = 0.54.

The impedance is theoretically calculated by solving the
functions F1(ω),F2(ω),F3(ω), F4(ω) in terms of the cou-
pling factors M− and M+. On the other hand, the functions
F1(ω),F2(ω),F3(ω), F4(ω), and the coupling factors M−
and M+ can be determined as the function of the beam-
induced voltages at the ends of cables by relating the bound-
ary conditions to those for the cables [8].

The impedances are measured by letting an injection beam
from LINAC pass through the kicker once and extracting
it from the RCS immediately. The theoretical and the mea-
sured results by using the beam with β = 0.54 are shown in
Figs. 2 and 3. The theoretical results (red) well reproduce
the measurement results (blue). The artificial sharp peaks
appear in the measured results at n/∆t, where n is integer,
∆t(' 560ns) is the pulse length of the beam, because they
are singular points in the Fourier transform of the pulse
beam. The agreement between the theoretical result and
the measurement one using the beam (not a wire) signifi-
cantly enhances the reliability of the estimation of the kicker
impedance at the RCS.

The theoretical results for β = 0.97 are shown in the yel-
low lines in Figs. 2 and 8, as well. The comparison between

the results for β = 0.54 and the ones for β = 0.97 shows
that the longitudinal impedance has little dependence on γ
factor, while the horizontal one is roughly proportional to
β. In general, the impedance for a non-relativistic beam
tends to be smaller than that for a relativistic one. However,
the longitudinal wakes are excited by the beam like cosine
function [11], and they are nearly constant at low frequency
during the beam passage. Consequently, the longitudinal
impedance has little dependence on the γ factor at low fre-
quency. This means that the beam tends to be more unstable
horizontally than longitudinally, as it becomes relativistic.

Now, let us discuss the strategy to achieve one mega-watt
goal at the RCS.

SIMULATION/MEASUREMENT RESULTS
AND THE STRATEGY TO ACHIEVE ONE

MEGA-WATT GOAL AT THE RCS

Figure 4: The left figure shows the measured beam positions
of 750 kW beam for the different terminal conditions, where
ξ is fully corrected in the entire energy. The right figure
depicts the tune behavior in the measurements.

Let us start demonstrating that the kicker impedance
dominates among the RCS impedance sources. The kicker
impedance is minimized by connecting matched resistors
to all terminals of the cables. The procedure eliminates the
spike structures in Figs. 2 and 3 by absorbing the beam-
induced current into the matched resistors [8, 12]. Figure 4
shows the measured beam positions for 750 kW equivalent
beam, where the chromaticity ξ is fully corrected in the
entire energy. When the terminals are open, the vertical
motion (blue) becomes unstable accompanied with the hor-
izontal motion (red), because the horizontal and vertical
tunes merge during the acceleration. The black (horizon-
tal) and green (vertical) lines demonstrate that the resistors
remarkably suppress the beam growth rate, compared with
the red and blue lines. Now, it is obvious that the kicker
impedance substantially determines the preferable tune to
increase the beam intensity.

Figure 5 shows simulation results for one mega-watt beam
(the r.m.s size of momentum spread (∆p/p) of the injection
beam from LINAC is assumed to be 0.025%.). The results
is obtained with the condition that the chromaticity ξ is
corrected only at the injection energy. Even in the condition,
the left figure predicts the beam instability, where the tunes
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Figure 5: 1 MW simulation results, where the chromaticity
ξ is corrected only at the injection energy. In the left figure,
the tunes νx = 6.45 and νy = 6.42 are fixed during the
acceleration. In the right figure, the tunes change as in the
right figure of Fig. 4.

νx = 6.45 and νy = 6.42 are fixed during the acceleration
time. Nevertheless, the right figure of Fig. 5 shows that the
beam instability can be avoided, if the tunes are manipulated
as in the right figure of Fig. 4.

ν

ν

ν

ν ν

ν

ν

ν

ν

Figure 6: Measurement results of 750 kW beam, for the
different tune manipulations, where the chromaticity ξ is
corrected only at the injection energy.

The availability of the tune manipulation is demonstrated
by using 750 kW equivalent beam and the injection beam
with ∆p/p = 0.18%. In the left figure of Fig. 6, the beam
instability shown by the red and the blue lines (the tunes
are fixed) is stabilized to be the black and the green lines by
the tune manipulation (the right figure of Fig. 4). The beam
with the fixed tunes becomes unstable only in the horizontal
direction, because the horizontal tune and the vertical one
are isolated in the case.

Several tune manipulations are experimentally challenged
by gradually decreasing the tunes toward the extraction time.
The right figure of Fig. 6 shows the results. Three tracking
patterns (νx = 6.32,6.27 and 6.22 at the extraction time)
seem promising to achieve the high intensity goal.
Only tune manipulations may be insufficient to accom-

plish one mega-watt beam. In that case, we actively make
use of the damping effect due to space charge. In the ac-
celerator covering the intermediate energy region such as
the RCS, the smaller bunching factor (average current/peak
current) especially around the low energy region causes the
beam stabilization by expanding the tune spread [13]. This is

realized by reducing the momentum spread of the injection
beam.

To demonstrate the scheme, let us prepare for the LINAC
beam with two momentum spreads (0.08% and 0.18%). The
left figure of Fig. 7 shows the measured bunching factor of
the beams accumulating the injection beams with the differ-
ent ∆p/p. The injection beam with the smaller momentum
spread creates the smaller bunching factors for the RCS
beam. The right figure of Fig. 7 shows the corresponding
RCS beam behaviors, where νx = 6.45 and νy = 6.42 are
fixed during the acceleration, while the chromaticity ξ is
corrected only at the injection energy. The beam with the
smaller bunching factor is stabilized, as expected.

∆

∆ ∆

∆

Figure 7: The measured bunching factors (left) and the hori-
zontal beam positions for 750 kW beam (right).

In the routine operation of RCS, the sextupole magnets
are turned off, and the voltage with the second harmonic
RF as well as the one with the fundamental harmonic RF is
excited during the injection period. In order to mitigate the
space charge effect, the longitudinal painting is performed
by applying the phase sweep of the second harmonic voltage
(typically −100 degree) relative to the phase of the funda-
mental one, and by adequately superposing the voltage with
second harmonic to the one with the fundamental harmonic
in order that the injection beam feels momentum offset (typ-
ically −0.2 %) relative to the center of the RF-bucket (In
Figs. 4-7, the phase sweep and the momentum offset are set
to −100 degree and −0.2 %, respectively.).
On the other hand, the present strategy to achieve one

mega-watt beam is to make maximum use of the tune ma-
nipulation combined with the space charge damping effect.
When the damping effect is insufficient in reality, the bunch-
ing factor will be made lowered by activating the second
harmonic voltage without the phase sweep, neither the mo-
mentum offset during the injection period.

A REDUCTION SCHEME OF THE
KICKER IMPEDANCE

In order to pursue the higher intensity beam, there is no
way except reducing the kicker impedance itself. In order
to reduce the impedance, main idea is to insert a resistor
between the coaxial cable and PFN (pulse forming network).
However, the resistor has to be isolated from PFL to ensure
twice excitation current due to the superposition of the for-
ward and backward currents to extract beams, while it needs
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Ω

Figure 8: The terminal conditions of kicker cables (left),
and the intensity dependence of the impedance at β = 0.97
(right).

to be seen by the beams to absorb the beam-induced cur-
rent. A mechanism is needed to isolate the damping resistor
from the pulse current from PFL. From a mechanical point
of view, the easiest way is to insert a diode in front of the
resistor, as in the left figure of Fig. 8.
Requirement to real diodes is that the reverse voltage

VR must have at least 40 kV or higher. The most significant
concern is whether the beam-induced current flows the diode
having the such high reverse voltage. In order to substantially
reduce the impedance of the diode, four diodes withVR = 65
kV (MD04SNKJ [14]) connected in parallel are connected
to the resistor.
Now, let us observe the kicker impedance. The conven-

tional wire method cannot measure the impedance of the
kicker with the diodes. This is because the measurement is
basically done in frequency domain by using weak currents
with Network Analyzer.

However, it is now possible to indirectly (not directly as
in sec.2) find it by measuring the behavior of RT (of the
diode plus resistor) in Eq.(18) for the high intensity beam.
The results are shown in the right figure of Fig. 8. The
impedance becomes lower as the beam intensity is higher,
because the diode becomes more conductive for higher cur-
rent and the terminal impedance RT approaches the charac-
teristic impedance of the kicker. The scheme successfully
makes the present kicker impedance halved or less.

SUMMARY
The measured beam-induced voltage at the ends of the

kicker cables is successfully transformed to the kicker
impedance. The measurement enhances the reliability of the

estimation of the kicker impedance, so that it is incorporated
into the input of ORBIT.
In order to achieve high intensity beams, it is effective

to utilize tune manipulations and the space charge damping
effect. In other words, it is preferable that the momentum
spread of the injection beam is as small as possible.
The measurements of the terminal impedance RT at

the ends of the kicker cables by the beam-induced volt-
age/current demonstrate that the kicker impedance can be
halved or less by attaching the resistors combined with four
diodes in parallel there.
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