Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

Stefan Paret, Vladimir Kornilov, Oliver Boine-Frankenheim, GSI, Germany,
Thomas Weiland, Technische Universität Darmstadt, Germany
Outline

• FAIR and SIS-18
• Schottky diagnostics and beam transfer functions
 – Effect of linear space charge
• Measurement of space-charge effects
• Simulation of space-charge effects
• Summary
FAIR: experiments with high quality and high intensity beams

SIS-18 becomes booster
- Increase of beam intensity
- Arise of collective effects
 - Degradation of beam quality and particle losses
- Low energy
 - Strong space charge

P. Spiller, MOIC01
Low intensity Schottky spectrum

- Based on statistical fluctuations of local beam current and current dipole moment
- Non-destructive measurement of
 - Revolution frequency f_0
 - Fractional tune Q_f
 - Momentum spread
- Features
 - Longitudinal bands peaking at $f_0 m$
 - Side bands $P_0(f)$ centered around $f_0 (m \pm Q_f)$
 - Width of sidebands $\sigma_{m \pm}$
Schottky detection

Requires

- Pick-up
- Sum amplifier for longitudinal spectrum
- Difference amplifier for transverse spectrum
- Spectrum analyzer

![Diagram showing beam, spectrum analyzer, pick-up, and amplitude graph with f/ MHz and P/W axes.]
Transverse beam transfer functions (BTFs)

- BTF $r_0(f)$ defined as ratio of beam response to excitation
- Requires
 - Network analyzer
 - Exciter (kicker)
 - Pick-up
 - Difference amplifier
- Alternative to Schottky diagnosis
- Stability analysis
Impedance and space charge

- Impact of transverse dipolar impedances
 - Coherent tune shift ΔQ_{coh}
 - Coherent dipolar instability with growth rate τ—if not Landau damped
 - Impedance parameters
 \[
 \Delta U_{coh} = \frac{\Delta Q_{coh} f_0}{\sigma_m^\pm} \quad \text{and} \quad \Delta V = \frac{1}{\tau \sigma_m^\pm}
 \]

- (Direct) space charge
 - Non-linear self-field, very difficult to model
 \rightarrow tune spread
 - Linearized self-field (of K-V beam)
 \rightarrow incoherent tune shift
 \[
 \Delta Q_{sc} \propto \frac{N}{\epsilon}
 \]
Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

\[
r(f) = \frac{r_0(f_{sc})}{1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})}
\]

\[
P(f) = \frac{P_0(f_{sc})}{|1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})|^2}
\]

with \(\Delta U_{sc} = \frac{\Delta Q_{sc}f_0}{\sigma^\pm_m}\) and \(f_{sc} = f + \Delta U_{sc}\sigma^\pm_m\)

Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

\[
r(f) = \frac{r_0(f_{sc})}{1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})}
\]

\[
P(f) = \frac{P_0(f_{sc})}{\left|1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})\right|^2}
\]

with \(\Delta U_{sc} = \frac{\Delta Q_{sc}f_0}{\sigma_m^\pm}\) and \(f_{sc} = f \mp \Delta U_{sc}\sigma_{m}^\pm\)

Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

\[r(f) = \frac{r_0(f_{sc})}{1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})} \]

\[P(f) = \frac{P_0(f_{sc})}{|1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})|^2} \]

with \(\Delta U_{sc} = \frac{\Delta Q_{sc} f_0}{\sigma_m^\pm} \) and \(f_{sc} = f \pm \Delta U_{sc} \sigma_m^\pm \)

Experimental setup

- Energy 11.4 MeV/nucleon
- Detection of
 - Ion number N
 varied from 2.5×10^8 to 1.1×10^{10} Ar$^{18+}$ ions
 - Longitudinal Schottky Spectra
 → Gaussian momentum distribution
 - Beam profiles
 with ionization profile monitor → emittance
- $\Delta U_{coh}, \Delta V \ll \Delta U_{sc}$ → only ΔU_{sc} taken into account
Measured Schottky bands

- Fit of
 \[P(f) = \frac{P_0(f_{sc})}{1 + \Delta U_{sc} r_0(f_{sc})^2} \]

- Good agreement at low, medium and maximal intensity
Measured BTFs

• Noise suppression via time gating

• Fit of $r(f)$
 – Good agreement at low intensity
 – Deviations at high intensity

Amplitude [a. u.]
Phase [rad]
Measured stability diagrams

- Stability diagram with space charge
 \[
 \frac{1}{r(f)} = \frac{1}{r_0(f_{sc})} + \Delta U_{sc}
 \]

- Shifted as expected

- Approximately shaped as expected

- Disturbed by noise at high intensity
Measured space-charge parameter

- Estimation with beam parameters $\rightarrow \Delta U_{est}$
- Deformation of signal $\rightarrow \Delta U_{shape}$
- Position of signal (f_{sc}) $\rightarrow \Delta U_{shift}$
- Consistency $\rightarrow \Delta U_{shift} - \Delta U_{shape} = 0$

- ΔU_{sc} grows linearly with N
- Measured ΔU_{sc} larger than estimation
- Larger ΔU_{sc} for BTF
Possible error sources

Beam parameters

- Uncertainty of beta function at profile monitor
- Degradation of detector components

BTFs

Beam of high intensity close to coherent instability

- Nonlinear response to excitation?
- Perturbation by resonance?
PIC simulations

• Random macro particle distribution in phase space
 Fluctuation of dipole moment → transverse Schottky spectrum
• Self-consistent field computation in 2D
• Options:
 – Excitation with noise for BTF
 – Impedance kicks
• Transverse profiles: K-V beam or Gaussian
• Maximal $\Delta U_{sc} = 2$
Schottky simulations

Results for beam with Gaussian transverse profile

\[\Delta U_{sc} = 0 \]
\[\Delta U_{sc} = 1 \]
\[\Delta U_{sc} = 2 \]

- \(\Delta U_{sc} \) fitted to data
- Excellent agreement with data and expected \(\Delta U_{sc} \)
- Similar results for K-V und Gaussian profiles
BTF simulations

Results for beam with Gaussian transverse profile

- $\Delta U_{sc} = 0$
- $\Delta U_{sc} = 1$
- $\Delta U_{sc} = 2$

- ΔU_{sc} fitted to data
- Excellent agreement with data and expected ΔU_{sc}
- Similar results for K-V und Gaussian profiles
Simulated stability diagrams

- Good agreement with model
- More noise at high intensity
Simulation with impedance

Variation of ΔU_{coh} and ΔU_{sc} for direct comparison

Shift and deformation agree with model
Summary

Analytic linear space-charge model

- Different from dipolar impedance

Experiment

- Measurement of transverse Schottky spectra and BTFs
- Verification of model despite deviations in some parts
- Direct measurement of Q, ΔQ_{sc} und ΔU_{sc}

Simulation

- Transverse Schottky spectra and BTFs with space charge and imaginary impedances
- Excellent agreement with model
Thank you for your attention
Measured ΔQ