The Design of Beam Collimation System for CSNS/RCS

Na Wang
Institute of High Energy Physics, Beijing, China

Sep. 27-Oct. 1, 2010
HB2010 Workshop
Outline

• Introduction

• Two-stage collimation system design

• Compare among different schemes

• Dependence of collimation efficiency on apertures

• Summary
RCS – 4 Fold Structure

- Four straight sections - beam injection, collimation, extraction, RF systems

- Injection (chicane & bumps)
- RF Cavity
- Instruments and Others
- Collimation (transverse & longitudinal)
- Extraction (kickers & septum)
- Instrumentation

Inj./Ext. energy 0.08/1.6 GeV

Power 100 kW

Beam current 62.5 μA

Beam population 1.56×10^{13}

Hamonic number 2

Repetition frequency 25 Hz

Circumference 228 m

Betatron tune 4.86/4.78

Ring acceptance 540 π μm
Motivation

• **Localization of beam loss**
 - High collimation efficiency

• **Minimize uncontrolled beam losses**
 - <1 Watt/meter for hands-on maintenance

• **Beam halo cleaning**
 - Small beam loss -> larger beam loss
Beam Loss Distribution (No Collimation)

- The beam loss distribution (ORBIT)

- Total loss 2×10^{-4}, beam loss per component < 0.2 W/m

- The beam loss looks fine for an unperturbed machine, but worse performance are expected with errors or accidental cases
Two-stage Collimation System

- **Optics**
 - Separate straight section for transverse collimation
 - Similar phase advance in x & y planes
 - One 11 meter and two 3.8 meter dispersion free drift space
 - $\Delta\phi < 180^\circ$ (150 °, middle drift <90°)

- **One primary collimators**
 - 4 movable scrappers
 - Thin tungsten, $t = 0.17$ mm
 - 350 μm\cdotmrad (first restrictive apert.)

- **Four secondary collimators**
 - Adjustable or fixed
 - Thick, $t = 0.4$ m, 400 μm\cdotmrad
Comparison Among Collimation Schemes

- Collimation with up-right collimator jaws

- Collimation with DC bump

- Collimation with fixed elliptical apertures
1. Collimation with Up-right Collimator Jaws

- Primary → four movable scrappers with 90° apart
- Secondary → four movable vertical or horizontal jaws

Beam halo cleaning

- The emittance is depressed by the collimation, and the extract beam emittance decreased about 25% in both planes.
1. Collimation with Up-right Collimator Jaws

- **Collimation efficiency**

 - Total beam loss: 0.8%
 - Collimation efficiency: 93.5%
 - The beam losses mostly occur in the first three milliseconds
 - Average energy is 100 MeV

- The collimation efficiency varies with time as the impact parameter changes along with the expected emittance blow-up.
1. Collimation with Up-right Collimator Jaws

- Beam loss distribution

- The uncontrolled beam losses < 1 W/m.

- Over 96% of the beam lost within the collimation section.
2. Collimation with DC Bump

- **Principle**
 - In RCS, emittance shrinks during beam acceleration
 - DC bump → halo collimation in the early acceleration stage

 → smaller beam emittance at the extraction

\[\Delta: \text{Clearance space} \]
\[y_i: \text{Orbit bump at injection} \]
\[y_e: \text{Orbit bump at extraction} \]

\[y_{\text{bump},e} = y_{\text{bump},i} \frac{(B\rho)_i}{(B\rho)_e}. \]

2. Collimation with DC Bump

• **Simulation**
 - Vertical bump at primary collimator
 - Reduced bump factor $f = 0.8$

• **Emittance**
 - vertical \rightarrow 20 % ↓
 - horizontal \rightarrow 16 % ↑

(compare to the
case without bump)
2. Collimation with DC Bump

- Collimation efficiency

 - Total beam loss 1.7% with collimation efficiency of 90%

 - Larger number of beam loss locations

 - Exceed 1W/m at some position
3. Collimation with Fixed Elliptical Aperture

- **Primary**: four scrappers placed 45° apart to approximate the elliptical aperture
- **Secondary**: fixed elliptical aperture
- **Total beam loss 1.6% with resulting efficiency of 95.2%**
- **Similar loss pattern as the scheme with up-right collimator jaws**

![Graph showing loss distribution](image-url)
Comparison Among Collimation Schemes

<table>
<thead>
<tr>
<th>Schemes</th>
<th>Up-right jaws</th>
<th>DC bump</th>
<th>Fixed aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collimation efficiency</td>
<td>93.5%</td>
<td>90%</td>
<td>95.2%</td>
</tr>
<tr>
<td>Total beam loss</td>
<td>0.8%</td>
<td>1.7%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Loss in collimation section</td>
<td>96.2%</td>
<td>94.5%</td>
<td>97.7%</td>
</tr>
<tr>
<td>Uncontrolled loss</td>
<td>5.2E-4</td>
<td>1.7E-3</td>
<td>7.7E-4</td>
</tr>
<tr>
<td>Flexibility</td>
<td>flexible</td>
<td>flexible</td>
<td>less flexible</td>
</tr>
<tr>
<td>Extraction emittance, 99.9%</td>
<td>↓26% in x</td>
<td>↓22% in x</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>↓24% in y</td>
<td>↓31% in y</td>
<td></td>
</tr>
<tr>
<td><1 W/m</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

- Collimation efficiency better than 90%.
- Scheme 1 has moderate collimation efficiency and smallest beam loss.
- Scheme 2 shows lowest collimation efficiency and highest beam loss, enables halo collimation at early acceleration stage and results in smaller beam emittance.
- Scheme 3 shows best collimation efficiency, and main drawback is less flexibility.
Dependence of Collimation Efficiency on Primary Acceptance

- The primary acceptance varies with a constant ratio between the acceptance of the primary and secondary collimators.
- The collimation performance is strongly dependent on the acceptance of the primary collimators.

- The collimation efficiency decreases when $\varepsilon_{\text{primary}} > 350\pi$.
- Higher efficiency at 320 π with larger impact parameter and larger fraction of beam loss.

![Graph showing the dependence of collimation efficiency on primary acceptance](attachment:image.png)
Dependence of Collimation Efficiency on Physical Aperture

- A large enough acceptance gap between the collimator and the ring physical aperture is necessary in order to ensure good collimation efficiency.

- The collimation efficiency increases with the aperture ratio.
- The design value is moderate for the performance of the collimation system.
Summary

- Beam cleaning and collimation are necessary for beam loss localization for overall maintenance.

- A collimation system has been designed and studied for the CSNS RCS. The collimation efficiency is larger than 93%, and the maximum uncontrolled beam losses are less than 1 W/m along RCS.

- All results obtained so far refer to an unperturbed machine, works need to be done to include the magnetic errors, misalignments, COD, collective instabilities, et al…

- Accidental case should be studied in the future work.
Thanks for your attention!