Summary of Working Group C: Injection, Extraction, Accelerator Systems

D. Johnson and S. Cousineau

ICFA HB2010
Sept 27 - Oct. 1
Morschach, Switzerland
Outline of Summary

1. Essence of the Work Group
 • New ring/lattice concepts
 • Commissioning efforts
 • Designs for new facilities or upgrade plans (and challenges)
 • Operational facilities
 – Problems encountered

2. Foil technology status

3. Future technology for H- injection

4. Working group perspectives
Essence of the Work Group

- **Composition:** 2 oral sessions (9 talks) + Poster session (9 posters)
 - 1st session concentrating on injection
 - 2nd session on new accelerator designs and extraction
 - Work group discussion after 1st session focused on injection issues.

- **New ring/lattice concepts**
 - Non-Scaling FixedFieldAlternatingGradient rings/lattices

- **Commissioning efforts**
 - EMMA

- **Designs for new facilities or upgrade plans**
 - CERN (PSB and PS2)
 - PAMELA
 - PEFP
 - Project X
 - Mu2e (resonant extraction from FNAL Debuncher)

- **Operational facilities**
 - SNS
 - JPARC
New Accelerator/lattice Concepts

• NS-FFAG
 – Benefit with large momentum aperture
 • With one or a few passes
 – Gantries
 – RIA’s for muons and electrons
 – p+- or proton rings for longitudinal manipulations
 • For non-relativistic particles ->a few hundred turns
 – Particle therapy machines
 – Proton Drivers
 – Heavy ion drivers

• New “solid state direct drive” linear induction accelerator
Commissioning efforts

- **Electron Model for Many Applications (EMMA)**
 - Although not High Energy or High Intensity - first demonstration of a Non-Scaling FFAG (10-20 MeV)
 - **Goals**: EMMA Experiment (verify this new concept works)
 - Rapid acceleration with large tune variation
 - Serpentine acceleration
 - Map the transverse and longitudinal acceptances
 - **Completed injection commissioning (1000’s turns)**
 - Limited diagnostics (BPM’s)
 - Injection kicker ringing
 - **Demonstration of acceleration (current focus)**
 - **Detailed bench marking with codes**
Challenges for machines under design

- **Project X:**
 - Foil issues associated with long duration (~25 ms) injection of CW beam for proton driver or multiple short pulse injections. Constrains beam current to ~1mA which increases circulating beam hits on foil.

- **CERN:**
 - Both Linac2 upgrade from 50 MeV protons to 160 MeV H- requires PSB injection upgrade to H- multiturn injection. Will try to use existing injection hardware.
 - PSB extraction upgrade from 1.4 GeV to 2 GeV and the modification of PS for 2 GeV injection (including upgrade of injection line hardware)
 - Challenge is to make the new system work with the old hardware.

- **PAMELA:**
 - 30 to 70-250 MeV NS-FFAG (orbit moves with energy)
 - Design a fast and slow vertical extraction system which matches into extraction channel without

- **Mu2e:**
 - Design a resonant extraction system with good spill quality and low losses in the presence of large space charge and momentum spread.

- **PEFP:**
 - Currently operating 20 MeV linac, cavities to extend to 100 MeV finished this year. Plans for upgrade to 1 GeV RCS
Operational facilities

• Injection Experience in Recent High Power Machines
 – Despite detailed design work, both machines have suffered problems in injection areas.
 – Injection radiation levels are the hottest areas in both machines. This was anticipated.
 – Not anticipated was the amount of manpower + monetary resources that would be dedicated to addressing injection region issues after start of operations.
JPARC + SNS Injection/Extraction Recent Issues

JPARC:
- High loss due to circulating beam foil hits. Full aperture model not available during design stages, so loss locations not accurately predicted.
- IDmp aperture restriction causing beam loss.
- Extraction septum stray field issue

SNS
- IDmp aperture restriction also a problem for SNS.
- Foil damage and failure due to vacuum breakdown.
- Foil assembly damage due to reflected convoy (H-stripped) electrons.
Foil Technology Status

- Some foils currently in use are those which were under discussion as “promising new foil candidates” at HB2002, HB2004.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Beam Power</th>
<th>Foil</th>
<th>Lifetime / Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPARC</td>
<td>120 kW</td>
<td>HBC</td>
<td>1 Yr</td>
</tr>
<tr>
<td>SNS</td>
<td>1 MW</td>
<td>Diamond foil</td>
<td>18 weeks</td>
</tr>
<tr>
<td>LANL</td>
<td>80 kW</td>
<td>HBC</td>
<td>2 per year</td>
</tr>
<tr>
<td>ISIS</td>
<td>200 kW</td>
<td>Aluminum Oxide</td>
<td>1 per year</td>
</tr>
</tbody>
</table>
Future Technology for H- Injection

• Unique foil injection concepts
 – “Rotating foils”

• Laser technology
 – Lasers have come a long way in the last decade, but still fall short of laser-assisted stripping injection needs for high power beams.
 – Injection stripping requires: high peak power (MW), large pulse energy (mJ-mJ), high average power (kW), high pulse frequency (100’s Mhz)
 – Burst mode laser system
 – Recycling helps but has it’s own challenges.
 – Coherent beam combining
 – Cryogenic laser amplifiers
Gap between application requirements and available specs

Pulse Energy (J)

Repetition Rate (Hz)

- 1 mW
- 1 W
- 1 KW
- 1 MW
- 1 GW

- LLNL PW
- Vulcan
- HERCULES
- Gekko
- LOA
- X-ray (U. Tokyo)
- FLASH Photoinjector
- LCLS Photoinjector
- γ-ray source (AIST)
- Project X Stripping
- SNS Laser Stripping
- Beam diagnostics
- Current LPA/LIA Experiments

10/1/2010
Average power dropped more than 1000 times!

Pulse Energy (J) vs. Repetition Rate (Hz)

- 1 mW
- 1 W
- 1 KW
- 1 MW
- 1 GW

X-ray (U. Tokyo)
FLASH Photoinjector
LCLS Photoinjector
Project X Stripping
γ-ray source (AIST)
SNS Laser Stripping
Question: What do we need to get to 5 MW and beyond?

Response:
1) “A model versus measurement benchmark of foil temperature.”

We need to validate the foil models before we can rely on them to give us limits. This is a complicated diagnostics measurement because of the high radiation in the environment of the injection foil.
Working Group Conclusions

Working Group Comment:

Dump lines are not getting enough attention during the design stages.

For high power beams, the waste beams contain a significant amount of beam power and beam loss can be an issue.

Dump lines need more aperture, more knobs, e.g., more flexibility overall.
In the End

• There were many enlightening presentations
• There were many fruitful discussions
• There was much food and coffee
• A wonderful banquet
• Superb presentation and support personnel
• Friendly smiles everywhere
• And a big round of applause for PSI.