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Abstract 
The current design of beam preparation for a proposed 

mu->e conversion experiment at Fermilab is based on 
slow resonant extraction of protons from the Debuncher.  
The Debuncher ring will have to operate with beam 
intensities of  particles, approximately four 
orders of magnitude larger than its current value.  The 
most challenging requirements on the beam quality are 
the spill uniformity and low losses in the presence of 
large space charge and momentum spread.  We present 
results from simulations of third integer resonance 
extraction assisted by RF knock-out (RFKO), a technique 
developed for medical accelerators.  Tune spreads up to 
0.05 have been considered. 

INTRODUCTION 
The Mu2e experiment, proposed at FNAL is aimed to 

search for rare neutrinoless decays of a muon to electron 
in the Coulomb field of the atomic nucleus [1]. This 
experiment is designed to be sensitive to muon 
conversion at the level of , which improves 
existing experimental limits by 4 orders of magnitude. 
This requires a large suppression of the background. A 
pulsed structure of the proton beam suits this purpose. A 
veto gate allows prompt beam background to die down 
during 750ns, after which the detector is activated to look 
for mu-atom decays. The search time is limited by the 
muon lifetime in the atom (864ns), therefore, the time 
structure defined by the revolution time in the Debuncher, 
1.69μs, is almost ideal for this scheme. A single bunch of 
20-40ns width is formed in the Debuncher and resonantly 
extracted towards the mu2e production target. This bunch 
structure provides a substantial natural initial background 
suppression. Additional suppression is provided by 
external extinction system at level of . There are 
currently two alternative schemes of the resonant 
extraction under consideration: the half-integer and the 
third-integer resonance. Here we consider the latter one. 

DEBUNCHER 
The 8 GeV proton beam from the FNAL Booster is sent 

to the Accumulator via the Recycler. Three  batches of 
53MHz Booster beam are momentum stacked and then       
rebunched into an h=4, 2.5MHz rf. Beam bunches then 
are sequentially transferred one at a time to the 
Debuncher and slowly extracted during 160ms. 

The Debuncher ring has 3-fold symmetry, 3 arcs and 3 

straight sections. In addition, each arc and each straight 
are mirror symmetric, giving the machine an overall 
dihedral symmetry. Presently the machine optics is not 
quite symmetric, in order to accommodate stochastic 
cooling and maximize the machine acceptance. After 
completion of Run-II, stochastic cooling equipment will 
be removed and the lattice symmetry will be restored to 
allow high intensity proton operation.  

SPACE CHARGE 
Main requirements to the resonant extraction are the spill 
uniformity and minimal beam losses in the presence of 
substantial space charge tune shift. Slow spill from the 
Debuncher is done with a single bunch with rms length of 
40ns and initial intensity of  protons. Space 
charge tune shift is therefore significant. Due to high 
dispersion in the arcs (Dx=2m) and finite momentum 
spread (σp/p= 0.004), however, this tune shift is reduced 
to about 0.015. It is very important for the experiment to 
keep the bunch length as low as possible. However, 
reduction of rms length down from 40ns requires a 
considerable increase of the rf power in the Debuncher, 
and therefore its cost. If the trade-off between cost and 
performance is made in favour of the latter, the bunch 
length will be reduced to 20-30ns, therefore increasing the 
space charge tune shift to 0.025-0.03. This kind of a tune 
spread with a strong asymmetry of the tune distribution 
represents difficulties for the resonant extraction, in 
particular when a good uniformity of the spill shape is 
required.  

TRACKING SIMULATIONS 
Computer simulations of third-integer resonance 

extraction has been performed using the ORBIT code 
developed at ORNL [2].  Horizontal resonance tune was 
chosen at 29/3, the closest point to the current machine 
tune.  Transfer matrices based on the improved symmetric 
lattice were used in this simulation. The sextupole field 
was formed by 2 orthogonal groups of 3 sextupoles, 
located in two straight sections. A quad circuit for tune 
ramping comprised 3 trim quads in the middle of each 
straight section. An extraction septum and lambertson 
magnet are located in the third straight. The septum width 
is assumed to be 100μ, as that used in other applications 
around the lab. 

For calculating the space charge (SC) effects we used a 
so-called 2.5D-mode of ORBIT, where the particle 
density in longitudinal bins is calculated according to the 
actual longitudinal distribution, and the transverse 
distribution is assumed to be the same along the bunch. 
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