The beamlet method

Methods to improve FEL output from “dirty” beams

James Henderson, Lawrence Campbell and Brian McNeil
Outline

- Motivation Plasma accelerators
- Potential beamlet solution modulate and disperse
- Chicanes to maintain resonant interaction
- Simplified Model
- The beamlet method
- Conclusion
Motivation

- Plasma accelerators have accelerating gradients of 10^3 greater than conventional accelerators, potential for “table top” FELs.

Image credit - https://www2.physics.ox.ac.uk/research/plasma-accelerators
Front page image – http://lpap.epfl.ch/page--en.html
Motivation

- Plasma accelerators have accelerating gradients of 10^3 greater than conventional accelerators, potential for “table top” FELs.
- However, electron pulses from plasma accelerators typically have a large energy spread.

For an FEL we require

$$\frac{\sigma_\gamma}{\gamma_r} < \rho$$

where

$$\rho = 10^{-2}$$

A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

J. G. Gallacher, et. al. PHYSICS OF PLASMAS 16, 093102 2009
Potential Solution

- Beamlet method – based on EEHG technique
- Electron Pulse is modulated and then dispersed
Chicanes

Pass radiation between beamlets using a undulator-chicane lattice

\[\bar{s} = \bar{l} + \bar{\delta} \]

\[\frac{\Delta \omega}{\omega_r} = \frac{4\pi \rho}{\bar{s}} \]
Real Beamlets
Simplified Model

Approximating the beamlets

Front of light pulse

Electrons slip backwards in the chicane

Window in light frame

Units of cooperation length

-electrons

\((\gamma - \gamma_c)(\rho_0)\)

\(\overline{z}_f\)
Simplified Model

The modes are locked by equating modes from the undulator-chicane lattice and the resonant frequency difference of the beamlets.

\[
\frac{\Delta \omega_{\text{beamlet}}}{\omega_r} = 2 \frac{\Delta \gamma}{\gamma_r} \quad \quad \frac{\Delta \omega_{\text{modal}}}{\omega_r} = \frac{4\pi \rho}{\bar{s}} \quad \quad \Delta \omega_{\text{modal}} = \Delta \omega_{\text{beamlet}}
\]
Potential Solution

- Electron pulses with a large energy chirp exhibit an energy dependent slippage

\[\bar{s}_\gamma = 2 \left(\frac{\gamma_r - \gamma_j}{\gamma_r} \right) (\bar{l} + D) + \bar{s} \]

- Electron of different speeds will take different paths from undulator and chicane
- Can lead to mismatching when passing radiation from beamlet to beamlet
The beamlet method \((D=0)\)*

Mode-locked beamlet modes

\[
\bar{s} = 2.51, \bar{l} = 0.25, \bar{\delta} = 2.26, D = 0
\]

\[
\frac{\Delta \omega}{\omega_r} = \frac{4 \pi \rho}{\bar{s}}
\]

* James Jones’ Ref
The beamlet method \((D>0)\)

\[
\bar{s} = 2.51, \bar{l} = 0.25, \bar{\delta} = 2.26, \boxed{D = 0.3}
\]

\[
\bar{s}_\gamma = 2 \left(\frac{\gamma_r - \gamma_j}{\gamma_r} \right) (\bar{l} + D) + \bar{s}
\]
The beamlet method (D=0)

\[\frac{\Delta \omega}{\omega_r} = \frac{4\pi \rho}{\bar{\delta}} \]

\[|A|^2\]

\[\bar{s} = 2.51, \bar{l} = 1.88, \bar{\delta} = 0.63, D = 0\]

\[\bar{s}_\gamma = 2 \left(\frac{\gamma_r - \gamma_j}{\gamma_r} \right) (\bar{l} + D) + \bar{s} \]
The beamlet method

- Electron Pulse is modulated and dispersed
The beamlet method
The beamlet method

No Beamlets
Intensity at $\tilde{z} = 30.1593$

Beamlets
Intensity at $\tilde{z} = 30.1593$
Conclusion

• Method to improve the FEL output was presented
• This is on-going research
• Results so far are promising with two-three order magnitude improvement

Future development

• Optimization of the beamlet parameters
• Using a taper to cancel out the beamlet chirp
• Use of these techniques for multi electron pulse schemes
Thanks for listening.
Any questions?
Mode generation

For continued slips of distance s, only those wavelengths with an integer number of periods in distance s will survive after many such slips. For s an integer of λ_j:

$$s = N\lambda_j = (N+1)\lambda_{j-1}$$

$$\Rightarrow \omega_j = \frac{2\pi c N}{s} ; \omega_{j-1} = \frac{2\pi c (N+1)}{s} \Rightarrow \Delta \omega_s = \omega_{j-1} - \omega_j = \frac{2\pi c}{s}$$
Mode generation

For continued slips of distance s, only those wavelengths with an integer number of periods in distance s will survive after many such slips. For an integer of j:

\[\frac{2\pi c}{s} \]

The spectrum is the same as a ring cavity of length s. A ring cavity of length equal to the total slippage in each undulator/chicane module has been synthesized.
The beamlet method

U-CD-U-CS - special undulator-chicane modules
U – undulator
CD – dispersion only chicane
CS – slippage only chicane

\[\frac{\Delta \omega}{\omega_r} = \frac{4\pi \rho}{\delta} \]
The beamlet method

\[\frac{\Delta \omega}{\omega_r} = \frac{4\pi \rho}{\bar{s}} \]

\[\bar{s} = 2.51, \bar{l} = 1.88, \bar{\delta} = 0.63, D = -1.88 \]

\[\bar{s}_\gamma = 2\left(\frac{\gamma_r - \gamma_j}{\gamma_r}\right)(\bar{l} + D) + \bar{s} \]
The beamlet method

- Electron pulses with a large energy chirp exhibit an energy dependent slippage

\[\bar{s}_\gamma = 2\left(\frac{\gamma_r - \gamma_j}{\gamma_r} \right)(\bar{l} + D) + \bar{s} \]

- These electrons take a shorter path through the undulator than lower energy electrons

- Can lead to mismatching when passing radiation from beamlet to beamlet
Potential Solution