Laser pulse shaping for photoinjector applications

Yuelin Li

X-ray Science Division
Argonne National Laboratory
ylli@aps.anl.gov
An XFEL starts with a laser, well, normally …

Drive laser, LCLS
An XFEL start with a laser, well, normally …

A typical drive laser
Content

- Implications of the LCLS success
- The case of pulse shaping
 - Minimize emittance growth due to space charge force
 - Uniform ellipsoidal beam is the holy grail
- Review of pulse shaping techniques and examples
 - Cylindrical shaping
 - Ellipsoidal shaping
- Ellipsoidal shaping at APS
 - Scheme and beam simulation
 - A proof of principle experiment
- Adaptive control
- Conclusion
Implication of the LCLS success

- LCLS drive laser pulse shape

White, Birefringence crystal, ICFA FLS 2010, Stanford
Implication of the LCLS success

- Performance comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design</th>
<th>Hard</th>
<th>Soft</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge per bunch</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>nC</td>
</tr>
<tr>
<td>Single bunch repetition rate</td>
<td>120</td>
<td>30</td>
<td>30</td>
<td>Hz</td>
</tr>
<tr>
<td>Final linac e⁻ energy (injected)</td>
<td>13.6</td>
<td>13.6</td>
<td>3.5-6.7</td>
<td>GeV</td>
</tr>
<tr>
<td>Slice emittance (injected)</td>
<td>1.2</td>
<td>0.4</td>
<td>0.4</td>
<td>μm</td>
</tr>
<tr>
<td>Final projected emittance</td>
<td>1.5</td>
<td>0.5-12</td>
<td>0.5-1.6</td>
<td>μm</td>
</tr>
<tr>
<td>Final peak current</td>
<td>3.4</td>
<td>2.5-3.5</td>
<td>0.5-3.5</td>
<td>kA</td>
</tr>
<tr>
<td>Timing stability (r.m.s.)</td>
<td>120</td>
<td>50</td>
<td>50</td>
<td>fs</td>
</tr>
<tr>
<td>Peak current stability (r.m.s.)</td>
<td>12</td>
<td>8-12</td>
<td>5-10</td>
<td>%</td>
</tr>
<tr>
<td>X-rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEL gain length</td>
<td>4.4</td>
<td>3.5</td>
<td>~1.5</td>
<td>m</td>
</tr>
<tr>
<td>Radiation wavelength</td>
<td>1.5</td>
<td>1.5</td>
<td>6-22</td>
<td>Å¹1²</td>
</tr>
<tr>
<td>Photons per pulse</td>
<td>2.0</td>
<td>1.0-2.3</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td>Energy in X-ray pulse</td>
<td>1.5</td>
<td>1.5-3.0</td>
<td>1-2.5</td>
<td>mJ</td>
</tr>
<tr>
<td>Peak X-ray power</td>
<td>10</td>
<td>15-40</td>
<td>3-35</td>
<td>GW</td>
</tr>
<tr>
<td>Pulse length (FWHM)</td>
<td>200</td>
<td>70-100</td>
<td>70-500</td>
<td>fs</td>
</tr>
<tr>
<td>Bandwidth (FWHM)</td>
<td>0.1</td>
<td>0.2-0.5</td>
<td>0.2-1.0</td>
<td>%</td>
</tr>
<tr>
<td>Peak brightness (estimated)</td>
<td>8</td>
<td>20</td>
<td>0.3</td>
<td>10²³</td>
</tr>
<tr>
<td>Wavelength stability (r.m.s.)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>%</td>
</tr>
<tr>
<td>Power stability (r.m.s.)</td>
<td>20</td>
<td>5-12</td>
<td>3-10</td>
<td>%</td>
</tr>
</tbody>
</table>

*Brightness is photons per phase space volume, or photons s⁻¹ mm⁻² mrad⁻² per 0.1% spectral bandwidth.

*Slice refers to femtosecond-scale time slices and ‘projected’ to the full time-projected (that is, integrated) emittance of the bunch.

P. Emma et al, NATURE PHOTONICS, 2010; Y. Ding, PRL, 2009
Implication of the LCLS success

- Observation
 - LCLS proved the robustness of the FEL theory
 - LCLS benefited from low charge, high acceleration gradient operation

- Will a better beam (1 nC, <<1 mm mrad) help?
 - More photons per pulse: some users just want more photons!
 - Shorter undulator lines/lower beam energy

- Critical for low-gradient injectors in both cost and performance
 - DC and perhaps SC gun
 - For Hi-rep rate XFEL, XFELO, and ERL
Implications of the LCLS success

The case of pulse shaping
 – Minimize emittance growth due to space charge force
 – Uniform ellipsoidal beam is the most desirable

Review of pulse shaping techniques and examples
 – Cylindrical pulse
 – Ellipsoidal pulse

Ellipsoidal pulse at APS
 – Scheme and beam simulation
 – A proof of principle experiment

Adaptive control and candidates

Conclusion
The case of pulse shaping

Most of emittance growth is due the space charge, when beam energy is low in the inject however

- Emittance growth due to linear space charge force can be compensated
 - Serafini and Rosenzweig, PRE 55, 7565 (1997)

- Homogeneous ellipsoidal beam is the holy grail
 - Uniform electron density distribution in a ellipsoid

\[
\left(\frac{x}{A}\right)^2 + \left(\frac{y}{B}\right)^2 + \left(\frac{z}{C}\right)^2 = 1.
\]

\[
\vec{E} = (E_x, E_y, E_z) = \frac{\rho_0}{\varepsilon_0} (M_{x,x}, M_{y,y}, M_{z,z}),
\]

\[
M_z = \frac{1 + \frac{\Gamma}{\Gamma^3}}{\Gamma - \arctan \Gamma}, \quad M_x = M_y = \frac{1}{2}(1 - M_z)
\]

\[
\Gamma = \sqrt{\frac{A^2}{C^2} - 1}
\]
Space charge force distribution: three geometries

3D Gaussian

Cylindrical

H. Ellipsoidal
Content

- Implications of the LCLS success
- The case of pulse shaping
 - Minimize emittance growth due to space charge force
 - Uniform ellipsoidal beam is the holy grail
- Review of pulse shaping techniques and examples
 - Cylindrical pulses
 - Ellipsoidal pulses
- Ellipsoidal pulses at APS
 - The scheme and beam simulation
 - A proof of principle experiment
- Adaptive control
- Conclusion
Cylindrical: pulse stacking

- Separate control of longitudinal and transverse profiles
- Transverse: mostly by clipping a Gaussian
- Excellent for longitudinally flat topped pulse
 - Interferometer setup
 - Tomizawa, Quantum Electronics 37, 697 (2007)
 - Bi-fringence crystals (BFC)
 - Zhang, WEPB03; Rimjaem, WEPB09; Sannibale, WEPB36;
 - LCLS, FLASH, SPARC, ANL, PSI, et c
 - Beam emittance results varies…….
Cylindrical: pulse stacking with interferometer, SPRING 8

Scheme

IN : 2.5 ps

\(\lambda/2\) Plate

Pulse Doubler Unit

OUT : 20 ps

2nd. Dispersion: 23566 fs\(^2\) (1.63 ps)

2nd. Dispersion: 33566 fs\(^2\) (2.33 ps)

Setup

Pulse Stacker (3 stages)

Tomizawa, Quantum Electronics 37, 697 (2007)
Cylindrical: pulse stacking with an BFC, Cornell

- Excellent longitudinal flat topped pulse and beam

\[\Delta t = x \left(\frac{1}{V_o} - \frac{1}{V_e} \right), \]

Laser

Electron
Cylindrical: pulse stacking with an Solc fan filter, PITZ

- Continuous crystal angle, temperature stabilized, polarized, before amplification
- Excellent longitudinal flat topped pulse with 10-13 crystals; Transverse: clipped Gaussian, described as “round and flat”
 - S. Rimjaem et al, FEL 2009
Cylindrical: phase engineering

- Separate control of longitudinal and transverse
- A temporally square pulse (phase tailoring) + transverse top hat shaping (mostly clipping)
- Tried and being tried by many (LCLS, SPARC, PSI(WEPB14), FERMI), etc

Cylindrical: a phase engineering device

- A device widely used in laser and optical research

- **DAZZLER** and similar phase modulation device have been applied to photoinjector related laser pulse shaping for cylindrical pulse

- **UV version available**
 - T. Oksenhendler, CLEO 07

Diagram:

- Fast Ordinary Axis (mode 1)
- Acoustic wave
- Compressed pulse
- Chirped pulse
- Slow Extraordinary Axis (mode 2)

Graph:

- 266 nm

- **Argonne National Laboratory**
Cylindrical: Phase engineering, Sumitomo Heavy Ind

- SLM for pulse shaping
- Significantly improved emittance
- 14 MeV, 1 nC, 9 ps pulse

Cylindrical: phase engineering, SPARC

TABLE IV. Parameters of the beam corresponding to the best brightness result.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>5.65 MeV</td>
</tr>
<tr>
<td>Charge</td>
<td>0.83 nC</td>
</tr>
<tr>
<td>Laser spot size</td>
<td>360 μm</td>
</tr>
<tr>
<td>Laser pulse length</td>
<td>8.9 ps FWHM</td>
</tr>
<tr>
<td>Phase (φ − φ_max)</td>
<td>80</td>
</tr>
</tbody>
</table>

FIG. 10 (Color) Left: Typical transverse profile of the laser spot on the virtual cathode. Right: 2D laser spot profile.
Cylindrical: summary

- Separate longitudinal and transverse control
- Effectiveness demonstrated world wide
- Maturing and in production mode, especially using bifringence crystal stacker, which can be implemented right before delivery to the gun.
Ellipsoidal: blow-out

- Measurement at PITZ, O’Shea et al, 2009 ICFA

Pro
- Easy to implement: Need a short pulse (100 fs) with initial parabolic transverse distribution, no longitudinal shaping needed

Con
- Highly non-linear and only work at low charge <20 pC
Ellipsoidal: blow-out

FIG. 5 (color online). Measured (left) and simulated (right) asymmetric beam distribution for $Q = 50$ pC.

- Charge < 20 pC for emittance ~ thermal emittance, at 80 MV/m.
Ellipsoidal: pulse stacking

- Longitudinal and transverse profiles are not independent
- First beam simulation by Limborg
- Design exists, but with low efficiency
 - Vicario, ICFA FLS2010, Stanford; H. Tomizawa, private communication.
Ellipsoidal: pulse stacking, an interferometer design

Complex implementation, energy losses 75%

Vicario, ICFA FLS2010, Stanford; Tomizawa, private communication, 2006
Content

- Implications of the LCLS success
- The case of pulse shaping
 - Minimize emittance growth due to space charge force
 - Uniform ellipsoidal beam is the holy grail
- Review of pulse shaping techniques and examples
 - Cylindrical pulse
 - Ellipsoidal pulse
- Ellipsoidal pulse at APS
 - Scheme and beam simulation
 - A proof of principle experiment
- Adaptive control
- Conclusion
Ellipsoidal pulse at APS: scheme

- Difficulties
 - Simultaneous evolving longitudinal and transverse profiles
 - Homogeneous in 3-D
 - Actually a 2-D problem due to rotation symmetry

- Hope: coupling between time and space via chromatic dispersion

Phase: $\phi(\omega)$
Amplitude: $A(\omega)$

Phase: $\omega(t)$
Amplitude: $A(t)$

Size: $r(t)$
Amplitude: $A(t)$

Chromatic dispersion

Frequency domain

Time domain

Spatiotemporal

Chromatic dispersion

Phase tailoring

Radius modulation
Ellipsoidal pulse at APS: math

- A EM pulse can be written as
 \[E(r,t) = A(r,t) \exp(-i\phi(t)) \]
 \[\phi(t) = \int \omega(t) dt \]

- An ellipsoidal pulse
 \[r_b(t) = r_{\text{max}} \sqrt{1 - \left(\frac{t}{T}\right)^2} \]
 \[A(r,t) = \text{const} \]

- Chromatic Dispersion
 \[\frac{1}{f(\omega)} = [n(\omega) - 1] \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \Rightarrow \delta f = -\frac{f_0}{n_0 - 1} \frac{dn}{d\omega} \delta \omega \]

- Gaussian beam
 \[w(\delta \omega) = w_0 \left[1 + \left(\frac{\delta f(\delta \omega)}{z_R} \right)^2 \right]^{1/2} \]
 \[\delta f \gg z_R \rightarrow w \propto \delta f \propto \delta \omega \]

- Therefore
 \[\delta \omega(t) \sim \sqrt{1 - \left(\frac{t}{T}\right)^2} \rightarrow w(t) \sim \sqrt{1 - \left(\frac{t}{T}\right)^2} \]

 \[\Rightarrow \phi(t) = \int \omega(t) dt = \int (\omega_0 + \delta \omega(t)) dt = \omega_0 t \pm \frac{\Delta \omega}{2} \left[t \left(1 - \left(\frac{t}{T}\right)^2 \right)^{1/2} + T \sin^{-1} \left(\frac{t}{T}\right) \right] \]

 \[\Rightarrow A(t) = A_0 \left[1 - \left(\frac{t}{T}\right)^2 \right]^{1/2} \]

Y. Li and J. Lewellen, PRL 100, 078401(2008)
Ellipsoidal pulse at APS: beam simulation

Spatiotemporal profile

Emittance

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Shaped</th>
<th>UE</th>
<th>UC</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max radius (mm)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Full length (ps)</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0.1 rms</td>
</tr>
<tr>
<td>ε_x (mm mrad)</td>
<td>0.38 (0.57, 0.65*)</td>
<td>0.36 (0.57)</td>
<td>0.61 (0.79, 0.95*)</td>
<td>0.86 (0.95)</td>
</tr>
</tbody>
</table>

Y. Li and J. Lewellen, PRL 100, 078401(2008)

Ellipsoidal pulse at APS: a proof of principle experiment

- **Experimental setup**
 - 800 nm laser, 1 kHz, 10 nJ per pulse, 40 nm bandwidth
 - ZnSe lens as the focal lens for high dispersion
 - 25-mm diameter, 88.9-mm radius of curvature, and 2.9-mm center thickness, Janos Technology, A1204-105,
 - Dispersion 250 fs²/mm at 800 nm
 - DAZZLER as the phase modulator
 - Achromatic lens for transport

PP: pulse picker; D: AOPDF; SF: achromatic spatial filter; ZSL: ZnSe lens; AL: achromatic image relay lens; ODL: optical delay line; C: camera.

Ellipsoidal pulse at APS: a proof of principle experiment

- Excellent agreement between data and simulation
- Further work needed for
 - Demonstration in UV with larger beam
 - Beam experiment

Li, Lewellen and Chemerisov, PRSTAB 12, 020702 (2009).
Ellipsoidal: summary

- Blow-out scheme works but not applicable for light source applications
- Longitudinal and transverse profile are not separable thus intrinsically more complex.
- Designs exist, though very limited RD
- The need is overshadowed by the success of LCLS and the maturing cylindrical pulse shaping via BFC
Content

- Implications of the LCLS success
- The case of pulse shaping
 - Minimize emittance growth due to space charge force
 - Uniform ellipsoidal beam is the holy grail
- Review of pulse shaping techniques and examples
 - Cylindrical pulse
 - Ellipsoidal pulse
- Ellipsoidal pulse at APS
 - Scheme and beam simulation
 - A proof of principle experiment
- Adaptive control
- Conclusion
Adaptive control: the concept

- Emittance growth due to space charge force is nonlinear and complex, one solution may not fit all.
- Need adjustable pulse shapers
Adaptive control: already demonstrated in simulation

Multivariate optimization of a high brightness dc gun photoinjector

Ivan V. Bazarov and Charles K. Sinclair

Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA

(Received 1 February 2005; published 24 March 2005)

We have conducted a multiobjective computational optimization of a high brightness, high average current photoinjector under development at Cornell University. This injector employs a dc photoemission electron gun. Using evolutionary algorithms combined with parallel computing resources, the multivariate parameter space of the photoinjector was explored for optimal values. This powerful computational tool allows an extensive study of complex and nonlinear systems such as the space-charge dominated regions of an accelerator, and has broad areas of potential application to accelerator physics and engineering problems. In the present case, the optimized injector is simulated to deliver beam of very high quality (e.g., a rms normalized emittance of 0.1 mm.mrad for 0.1 nC, and 0.7 mm.mrad for 1 nC bunches). The field strengths of the active elements of the injector are moderate and technically practical. The relevance of these results to various novel linac-based accelerator proposals is pointed out.

Papadopoulos, WEPB37
Adaptive control: candidate 1

Adaptive control: potential candidate 2

Beam radius: \(1/e^2\) width of 3 mm

Li, Lewellen and Chemerisov, PRSTAB 12, 020702 (2009).
Content

- Implications of the LCLS success
- The case of pulse shaping
 - Minimize emittance growth due to space charge force
 - Uniform ellipsoidal beam is the holy grail
- Review of pulse shaping techniques and example
 - If your work is not cited, it is my ignorance not bias.
 - Self evolving (blow out)
 - Pulse stacking
 - Phase engineering
- 3D, Ellipsoidal pulse at ANL
 - Scheme and effect on emittance growth
 - A proof of principle experiment
- Adaptive control
- Conclusion
Conclusions

- We reached a plateau in pulse shaping
 - Pulse stacking for cylindrical pulse via birefringence crystals is maturing and in production mode
 - These are “good enough” for low charge operation of high gradient guns such as the LCLS injector
 - Schemes for ellipsoidal beam are being developed
 - Adaptive control: theoretically feasible and practically no show stop
 - To go forward: dedicated test facility

- 1 nC, 0.5 mm mrad beams may lead to better and more cost effective XFELs
 - More photons, higher photon energies
 - Shorter linac or undulator lines