Harmonic Measurements at LCLS

D. Ratner
R. Bionta (LLNL, Livermore, California)
Introduction

Harmonic Content at LCLS

- Measure harmonics at normal operation
 - H.D. Nuhn will discuss amplification

- Third Harmonic
 - Strongest harmonic
 - Potential source of harder X-rays

- Second Harmonic
 - Background noise for users
Third Harmonic

- Third harmonic content
- Block fundamental
 - Gas (N_2) or solid (10um-30mm Be)
 - Measure counts on 100um YAG

X-ray Diagnostics (J. Welch, FROA1)
- Simplest harmonic measurement:
 - Take ratio of counts from two images
 - 900 eV fund: 1.7% 3rd Harmonic
 - 1.7 keV fund: 2.7% 3rd Harmonic

Fundamental

3rd Harmonic

Speckle from Be
Third Harmonic

- Scanning attenuation

 Counts $\propto T_{1st} \times P_{1st} + T_{3rd} \times P_{3rd}$

 \Rightarrow Counts $\propto T_{1st} + T_{3rd} \times (P_{3rd}/P_{1st})$

- 900 eV fund: 2.5% 3rd Harmonic (~ 1 mJ 1st)

![Graph showing counts as a function of transmission of fundamental pulse energy (a.u.)]
Fit proportion from attenuation

Counts $\propto T_{1st} \times P_{1st} + T_{3rd} \times P_{3rd}$

\Rightarrow Counts $\propto T_{1st} + T_{3rd} \times \left(\frac{P_{3rd}}{P_{1st}} \right)$

- 6 keV fund: 0.6% 3rd Harmonic (0.6 mJ 1st)

![Graph showing the relationship between transmission and pulse energy for different harmonic powers.](graph.png)
Third Harmonic

- Fit proportion from attenuation

\[
\text{Counts} \propto T_{1\text{st}} \times P_{1\text{st}} + T_{3\text{rd}} \times P_{3\text{rd}}
\]

\[
\Rightarrow \text{Counts} \propto T_{1\text{st}} + T_{3\text{rd}} \times \left(\frac{P_{3\text{rd}}}{P_{1\text{st}}} \right)
\]

- 8 keV fund: 3% 3\text{rd} Harmonic (1.5 mJ 1\text{st})

Graph showing the relationship between transmission and pulse energy.
Third Harmonic

- Confirm 3rd Harmonic measurement at 6 keV
 - Zirconium K-edge
 - Confirms wavelength and intensity

Pulse Energy (a.u.)

Electron Energy Scan

Jump at K-edge is approximately ~1% of fund

Thanks to Alan Fisher!
What is 2nd harmonic content in FEL?
What is 2nd harmonic content in beamline?

- Measure transmission cutoff
Mirror Cutoff

- Soft X-ray beamline transmission

Cutoff near 2.2 keV

http://henke.lbl.gov/optical_constants/
Second Harmonic

- FEL is mostly 1st and 3rd harmonics
- Need to isolate 2nd harmonic:
 - Block fundamental with solid and gas attenuators
 - 3rd harmonic and higher absorbed in mirrors
 - Measure 2nd harmonic on P3S
Second harmonic image:

Image on P3S, 900eV fund 0.4 mil Be + 5.5 torr atten

2.7 kev 3rd harmonic above cutoff

Single Particle
Second Harmonic Distribution

K.J. Kim, USPAS
Harmonics scale differently with attenuation

\[\text{Counts} \propto T_{1st} \times M_{1st}^3 + T_{2nd} \times M_{2nd}^3 \times \left(\frac{P_{2nd}}{P_{1st}}\right) \]

\(T = \text{Transmission from attenuators, } M = \text{Mirror transmission} \)

1 keV fund (0.05%)

900 eV fund (0.06%)
Scan Gas Attenuator

- Second harmonic weaker than third harmonic
 - Bunching stronger at second harmonic, but...
 - Planar undulators only couple odd harmonics on axis

- Second Harmonic After Burners (SHABs)
 - Final undulators are tuned to second harmonic
 - H.D. Nuhn will discuss Thursday, 16:00, THOCI2
Summary of results:

- Approximately 0.5-3% 3rd Harmonic
- Proportion depends on FEL fundamental performance

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>2nd Harmonic</th>
<th>3rd Harmonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>0.06%</td>
<td>2%</td>
</tr>
<tr>
<td>1</td>
<td>0.05%</td>
<td>NA</td>
</tr>
<tr>
<td>1.7</td>
<td>NA</td>
<td>3%</td>
</tr>
<tr>
<td>6</td>
<td>NA</td>
<td>0.6%</td>
</tr>
<tr>
<td>8</td>
<td>NA</td>
<td>2%</td>
</tr>
</tbody>
</table>
Second Harmonic

- Summary of results:
 - Approximately 0.05% 2\(^{\text{nd}}\) Harmonic
 - High energy will be measured soon

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>2(^{\text{nd}}) Harmonic</th>
<th>3(^{\text{rd}}) Harmonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 eV</td>
<td>0.06%</td>
<td>2%</td>
</tr>
<tr>
<td>1 keV</td>
<td>0.05%</td>
<td>NA</td>
</tr>
<tr>
<td>1.7 keV</td>
<td>NA</td>
<td>3%</td>
</tr>
<tr>
<td>6 keV</td>
<td>NA</td>
<td>0.6%</td>
</tr>
<tr>
<td>8 keV</td>
<td>NA</td>
<td>2%</td>
</tr>
</tbody>
</table>
Thanks to:
LCLS project director J. Galayda,
Commissioning Team and
many collaborators and visitors from
LBNL, LLNL, DESY