Feasibility Study of Short-Wavelength and High-Gain FELs in an Ultimate Storage Ring

Koji Tsumaki (JASRI/SPring-8)

- Introduction
- Ultimate Storage Ring
- Analysis
- Simulation
- Summary
3rd Generation Light Source
- Storage ring
- Average brightness $B_0 \sim 10^{20}\text{ (ph/s/mrad2/mm2/0.1\%bw)}$

4th Generation Light Source
- Linac
- Average brightness $B_x \sim 10^{26}\text{ (ph/s/mrad2/mm2/0.1\%bw)}$

Storage-Ring-Based Light Sources finished?
- stability, reliability, variety of bunch pattern, many photon beam line, matured technology
- Ultimate storage ring
 Average brightness $B_u \sim 10^{23}\text{ (ph/s/mrad2/mm2/0.1\%bw)}$
 $\sim (10^2-10^3)B_0$

Objective
- To increase the average brightness of an ultimate storage ring to $10^4-10^6B_0$
Introduction

Partial Lasing
• Z. Huang et al1 showed that short-wavelength high-gain FEL is possible in PEPX storage ring
 • $\lambda=3.3\text{ nm-30 nm}$
 • Average Brightness $10^2-10^3B_0$

Wavelength Region
• Is shorter wavelength FEL in storage ring impossible?

The approximate range of average brightness.2

1 Z. Huang et al., Nucl. Instr. and Meth. A 593 (2008) 120.
2 J. Corlett and R. Hettel, PAC09.
Ultimate Storage Ring

Main Parameters of Storage Ring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>E</td>
<td>6 GeV</td>
</tr>
<tr>
<td>Natural emittance</td>
<td>ε_o</td>
<td>34.5 pm</td>
</tr>
<tr>
<td>Full coupling</td>
<td>$\varepsilon_{x,y}$</td>
<td>17.3 pm</td>
</tr>
<tr>
<td>Normalized</td>
<td>$\gamma \varepsilon_{x,y}$</td>
<td>0.20 um</td>
</tr>
<tr>
<td>Energy spread</td>
<td>σ_e</td>
<td>0.89x10^{-3}</td>
</tr>
<tr>
<td>Bunch length</td>
<td>σ_l</td>
<td>1.23 mm</td>
</tr>
<tr>
<td>Circumference</td>
<td>L_c</td>
<td>1999 m</td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td>10 bend achromat</td>
</tr>
<tr>
<td>Number of cells</td>
<td>N_c</td>
<td>32</td>
</tr>
</tbody>
</table>

Ultimate Storage Ring – Betatron function and dynamic aperture

Betatron and dispersion functions in a cell

- Dynamic aperture is small, but enough to store the beam.
- Long straight section length is 6 m and $\beta_x=25\text{m}$, $\beta_y=5\text{m}$.
- But it is easy to change the straight section length without changing the main parameters.
Effect of intrabeam scattering at 1mA bunch current

- Emittance growth at 100% coupling
 \[\varepsilon_x = \varepsilon_y = 17 \text{ pm} \]
 \[\varepsilon_x = \varepsilon_y = 37 \text{ pm} \]
- Bunch lengthening
 Negligibly small

Emittance in an actual machine

- Emittance \(\varepsilon_x = \varepsilon_y < 37 \text{ pm} \)
- Damping effect of undulator
- Use of damping wiggler
Analysis

- Analisis was done as follows.¹

Energy spread in a storage ring

Rate-of-change of energy spread

\[
\frac{d\sigma^2}{dt} = \frac{\sigma^2}{\tau_e} - \frac{\sigma^2}{\tau_e} + \frac{2P}{\rho P_{\text{beam}} T_0}
\]

\[
\sigma_0 = \sigma_{e_0} / \rho, \sigma = \sigma_e / \rho
\]

- Solving these equations numerically for \(\sigma_e \), energy spread \(\sigma_e \), FEL power \(P \), and power gain length \(L_g \) are obtained.

FEL Power

\[
P \approx P_n \exp\left(\frac{Z}{L_G}\right)
\]

\[
L_G = L_{G0} (1 + \Lambda)
\]

\[
\Lambda(\sigma_e, \varepsilon, \beta, \ldots)^2
\]

\[
\rho = \left[\frac{1}{8\pi I_A} \left(\frac{K[JJ]}{1 + K^2 / 2} \right) \frac{\gamma^2 \lambda_r^2}{\Sigma_x} \right]^{1/3}
\]

FEL 2010

¹ Z. Huang et al., Nucl. Instr. and Meth. A 593 (2008) 120.
In the calculation, the following undulators are assumed.

Undulator Parameters

<table>
<thead>
<tr>
<th>λ_r</th>
<th>λ_u</th>
<th>K</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 nm</td>
<td>15 mm</td>
<td>1.3</td>
<td>SPring-8 XFEL1</td>
</tr>
<tr>
<td>0.18 nm</td>
<td>18 mm</td>
<td>1.9</td>
<td>SPring-8 XFEL1</td>
</tr>
<tr>
<td>0.49 nm</td>
<td>37 mm</td>
<td>2.3</td>
<td>SPring-8 storage ring2</td>
</tr>
<tr>
<td>0.90 nm</td>
<td>45 mm</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1.86 nm</td>
<td>50 mm</td>
<td>4.3</td>
<td>PEP-X3</td>
</tr>
</tbody>
</table>

Analysis – Beta dependence of FEL power

- Assumption: Undulator length 100 m, Bunch current 1mA ($I_0 = 648A$)
- For 17 pm emittance, $2\text{ m} < \beta < 4\text{ m}$ and for 37 pm, $2\text{ m} < \beta < 5\text{ m}$.

(a) $\varepsilon_x = \varepsilon_y = 17\text{ pm}$

(b) $\varepsilon_x = \varepsilon_y = 37\text{ pm}$
Analysis – Betatron function at undulator section

- FODO cell was chosen as the lattice in the undulator section
- Betatron function should be less than 5 m.
- The shorter the cell length, the smaller the average betatron function.
 But, the undulator’s occupation ratio in the undulator section becomes small.
- 3.5 m cell length is determined. Average betatron function value became 6.7 m.

(a) FODO cell
(b) Betatron function
Analitical Results

Undulator length dependence of power, energy spread, gain length at $\varepsilon_x=\varepsilon_y=17\text{pm}$

- Achievable maximum power in the storage ring is $\sim 1 \text{ MW}$.
- Increase of FEL power: Increase of FEL Interaction \longrightarrow Increase of energy spread \longrightarrow Degradation of gain length \longrightarrow Saturation of FEL power

(a) Undulator length dependence of FEL power

(b) Undulator length dependence of energy spread

(c) Undulator length dependence of gain length

FEL 2010
Analitical Results
Undulator length dependence of power, energy spread, gain length at $\varepsilon_x=\varepsilon_y=37\text{pm}$

- Achievable maximum FEL power is $\sim 1\text{ MW}$.

(a) Undulator length dependence of FEL power
(b) Undulator length dependence of energy spread
(c) Undulator length dependence of gain length
Simulation

- Numerical simulations have been done using SIMPLEX\(^1\).
- For 1.86 nm, maximum power 400 kW (17pm) and 100 kW(37pm).
- For 0.90 nm, maximum power 70 kW (17pm) and 3 kW(37pm).
- Amplification from ~300 times to ~600 times is possible at 1.86 nm.
- At 0.90 nm, amplification from ~10 to ~100 is possible.

\[(a) \varepsilon_x = \varepsilon_y = 17 \text{ pm} \quad (b) \varepsilon_x = \varepsilon_y = 37 \text{ pm}\]

\(^1\) T. Tanaka, http://radiant.harima.riken.go.jp/simplex
Simulation

FEL with a bypass

- For a 17 pm emittance beam, we can achieve saturation at 1.86 nm and 0.9 nm.
- For a 37 pm emittance beam at 1.86 nm, FEL power nearly reached saturation.
- FEL power is about 1 GW.

(a) $\varepsilon_x = \varepsilon_y = 17$ pm

(b) $\varepsilon_x = \varepsilon_y = 37$ pm
Summary

- We studied the viability of the high-gain FELs in wavelengths ranging from 0.10 nm to 1.86 nm, assuming 1 mA bunch current in an ultimate storage ring.

- Analytical results showed that the achievable maximum FEL power in the storage ring is on the order of 1 MW.

- Assuming a 90 m effective length undulator, we carried out the simulations using SIMPLEX.
 - At 1.86 nm, the maximum achievable power is 100-400 kW and we can expect about 300-600 times power amplification.
 - At 0.90 nm, the maximum achievable power is 3-70 kW and we can expect about 6-100 times power amplification.
 - We also carried out simulations with a bypass and found that FEL saturation is possible at 1.86 nm.

- These results show that FEL in the ultimate storage ring is promising for wavelengths longer than 0.9 nm.