Characterization of Second Harmonic Afterburner Radiation at the

Franz-Josef Decker Henrik Loos
Yuantao Ding Mark Messerschmidt
Paul Emma Heinz-Dieter Nuhn
Alan Fisher Daniel Ratner
Joe Frisch James Turner
Zhirong Huang James N. Welch
Rick Iverson Zack Wolf
Yurii Levashov Juhao Wu

Presented at the
32nd International
Free Electron Laser Conference

Malmö stad

- MMX Sweden -

Thursday, August 29, 2010
Utilizing the Micro-Bunched Electron Beam

- At FEL saturation, the electron beam is highly micro-bunched at odd and even harmonics.
- Adding extra undulators (resonant at any of these harmonics but with different parameters) can be used to produce an additional FEL quality photon beam with properties such as
 - Enhanced harmonics content
 - Various types of planar and circular polarization (fundamental or 2nd harmonic)
 - ...

- Those extra undulators are generally referred to as “After-Burners”, AB.
- The After-Burner concept is being tested at the LCLS in the form of a Second Harmonic After-Burner (SHAB).

 Z. Huang and S. Reiche, *in Proceedings of the 2004 FEL Conference*, 201-204
Testing the After-Burner Concept

- In the LCLS, saturation occurs well before the end of the undulator even at the shortest wavelength.
- The last 10 of the 33 LCLS undulator segments have been set aside for the SHAB test.

![Diagram showing existing LCLS undulator with wavelength and harmonic information]
Testing the After-Burner Concept

- In the LCLS, saturation occurs well before the end of the undulator even at the shortest wavelength.
- The last 10 of the 33 LCLS undulator segments have been set aside for the SHAB test.

\[16 \text{ keV} = 0.75 \text{ Å (up to 20 keV} = 0.62 \text{ Å at 15 GeV) \]

\[\text{existing LCLS undulator} \quad \text{2nd harmonic after-burner} \]

- Presently, the last 5 undulator segments (U29 – U33) have been converted to SHABs
Expected Second-Harmonic Afterburner Yield

Smaller β function in afterburner will help

GENESIS simulation with $I_{pk}=3$ kA, $Q=250$ pC, $\varepsilon_n=0.6$ μm, $\Delta p/p=10^{-4}$ at $E=14$ GeV.
K Requirement

\[K = \sqrt{K_0^2 / 2 - 1} \]

LCLS SHAB Characterization
Page 6
Gap Change Visualization

Present Undulator

2nd Harmonic Undulator

Shim Size not changed in visualization
LCLS Undulator Phase Scheme

Cell: 3.656 m
Strongback: 3.400 m
112 Core Periods: 3.360 m

Phase Adjustment

K = 3.5000 (\lambda)

K = 2.2525 (\lambda/2)

Free Space Phase Slippage

LCLS SHAB Characterization Page 9
Undulator Roll-Away and K Adjustment Function

First; K=3.5000; Δx=-4.0 mm

Neutral; K=3.4881; Δx= 0.0 mm

Roll-Away; K=0.0000; Δx=+80.0 mm

Pole Center Line
Vacuum Chamber
Horizontal Slide

LCLS SHAB Characterization
Page 10
First SHAB Undulator Installed and Tested

- Gap of one undulator was increased and installed in slot U33 on 12/9/2009.
- Beam measurements done with the K-Mono

\[E_e = 9.6 \text{ GeV} \]
\[E_{x-ray} = 8.19 \text{ keV} \]
Required by K-Mono

\[K = 2.24275 \]
\[\Delta K/K = 1/161 \]
Installation and Test Schedule

• December 9, 2009
 SHAB U33 installed and tested @ 8.2 keV SHAB energy

• January – May 2010
 SHABs U29 – U32 modified, tuned, and installed

• May 2010 – August 2010
 SHABs commissioned as discussed in this talk

• Three more SHABs are ready to be installed

• Presently a maximum of 10 SHABs is considered

• Next steps are not yet decided
Diagnostics

- No absolute intensity measurement available (relying on eloss)
- Use various filters, attenuators, slits, YAG screens
- See talk by J. Welch (FROAI1) for discussion of x-ray diagnostics
Setup Steps

• Start with BBA (all undulator segments inserted)
• Set electron energy to target energy
 – 4.3 GeV (for 900 eV / 1800 eV) 2 keV 3rd harmonic mirror cutoff
 – 6.2 GeV (for 4096 eV / 8192 eV) K-Mono
 – 14.2 GeV (for 9000 eV / 18000 eV) Zr K edge
• Setting a linear taper
• Remove SHABs
• Adjust electron energy to set 2nd FEL harmonic to exact energy
• Insert 1 SHAB at a time and scan K and set to optimum
• Measure saturation point and set desired number of bunching undulators
Diagnostics for SHAB Energy = 8192 eV

- Use K Mono to remove fundamental and third harmonic.
- Use NFOV (Direct Imager) for observation.
- PROBLEM:
 K Mono very difficult to adjust

As example of use see K scan of U33, in earlier slide

End of Undulator

Transmits only 8192 eV

LCLS SHAB Characterization
Page 15
Diagnostics for SHAB Energy = 18000 eV

- Use Zr/Si foil to remove fundamental.
- Use deflection on HXR mirror pair to remove 3rd harmonic.
- PROBLEM:

 HXR mirrors are too small for the beam.
 They are difficult to align to guarantee good 3rd harmonic suppression.
 MD time too short to change machine energy from <2keV operation and tune.
Zr + Si Spectrum

Similar absorption at 2nd and 3rd harmonic

Thanks to Alan Fisher!

LCLS SHAB Characterization
Page 17
Bend energy 14.232 GeV

Background subtraction effectively removed non-beam background.

Above K edge intensity from 3^{rd} harmonic and leakage is quite low.
18 keV SHAB Energy

U1-33 all in (28+5 SHABs)

LCLS SHAB Characterization
Page 19
- Remove fundamental with wavelength dependent gas attenuator
- Remove third harmonic three consecutive mirrors (each with 2 keV cutoff)
- Use P3S2 YAG screen for detection. SXR spectrometer can be used if available and if signal strength is sufficient.
GainLength Gui

determine FEL saturation at ~11 undulator sections at SHAB energy of 1800 eV:

Remove first 17 undulators ➔

1800 eV SHAB Energy
Harmonic Bunching

Adjust number of regular undulators to optimize 2nd harmonic microbunching in SHABs. Granularity is given by Segment Distance.

GENESIS simulation with $I_{pk}=1 \text{kA}$, $\epsilon_n=0.6 \text{\mu m}$, $\Delta p/p=10^{-4}$ at $E=4.5 \text{ GeV}$.
Debunching in SHABs due to Undulator R_{56}

- The FEL induced energy spread in the regular undulator is heating the electron beam
 - SHABs have an R_{56}
 - In an undulator $R_{56} = -\frac{K^2 L_u}{2\gamma_0^2} \approx -2N_u \lambda_r$

- When the R_{56} of the SHABs spreads electrons by more than $\lambda_r/4$, the microbunching, built in the regular undulator, diffuses in the SHABs
 \[
 R_{56} \frac{\Delta \gamma}{\gamma} \approx \frac{\lambda_r}{4} \Rightarrow \gamma \approx \frac{1}{8\Delta \gamma / \gamma} \approx \frac{1}{8\rho}
 \]

- Take $\rho = 5 \times 10^{-4} \Rightarrow N_u \sim 250 \Rightarrow$ about 2 SHABs
- Of course, one can taper the SHABs to use more segments
- Higher energy FEL can have more SHABs, since ρ is smaller

- The ratio of energy spread to bunching amplitude can be improved with a dispersive section acting on the pre-saturated bunch. (similar to HGHG scheme) L.H. Yu, Phys. Rev. A 44, 5178 (1991)
The FEL induced energy spread in the regular undulator is heating the electron beam

- SHABs have an R_{56}
- In an undulator $R_{56} = -\frac{K^2 L_u}{2\gamma_0^2} \approx -2N_u \lambda_r$

- When the R_{56} of the SHABs spreads electrons by more than $\lambda_r/4$, the microbunching, built in the regular undulator, diffuses in the SHABs

$$R_{56} \frac{\Delta \gamma}{\gamma} \approx \frac{\lambda_r}{4} \Rightarrow N_u \approx \frac{1}{8 \Delta \gamma / \gamma} \approx \frac{1}{8 \rho}$$

- Take $\rho = 5 \times 10^{-4} \Rightarrow N_u \sim 250 \Rightarrow$ about 2 SHABs
- Of course, one can taper the SHABs to use more segments
- Higher energy FEL can have more SHABs, since ρ is smaller

The ratio of energy spread to bunching amplitude can be improved with a dispersive section acting on the pre-saturated bunch (similar to HGHG scheme)

GENESIS simulation with $l_{pk}=1$ kA, $\varepsilon_n=0.6$ µm, $\Delta p/p=10^{-4}$ at $E=4.5$ GeV.

2nd harmonic intensity

0.5 GW \times 250 fs $= 0.12$ mJ

Prediction for 1800 eV SHAB Energy
• First three data points are Und 26-28 (mostly 3rd harmonic)
• Last five are SHABs (increase due to 2nd harmonic bunching)
Kick electron beam transversely to destroy FEL and micro-bunching at selected point. Measure energy loss at dump BPM

1800 eV SHAB Energy

E\text{--Loss}=0.45\pm0.04 \text{ MeV (0.11 mJ)}, 20\text{--AUG--2010 21:58:24 (4.50 GeV)}

N\text{--photons}=7.74\times10^{11}
E\text{--photon}=0.90 \text{ keV}
\langle I_p \rangle = 900 \text{ A}

U16-33 inserted

E\text{--loss for U29-33}

P3S2 YAG signal during E\text{--loss scan}
More Exotic Eloss Scans

E-loss for U16-33

- Difference of two E-loss scan should be SHAB E-loss

0.54 - 0.46 = 0.08 mJ

LCLS SHAB Characterization
SHAB Taper improves 2nd harmonic signal by a factor of 2

1800 eV SHAB Energy

\textbf{CONSTANT TAPER}

LCLS SHAB Characterization
Page 29
SHAB Taper improves 2nd harmonic signal by a factor of 2

1800 eV SHAB Energy

DOUBLE INTENSITY

SHAB Signal on P3S2 YAG

EXTRA SHAB TAPER

LCLS SHAB Characterization
Page 30
Turning off the heater kills SHAB signal

Shows that SHABs act on microbunching; also demonstrates the importance of the Laser Heater

LCLS SHAB Characterization
Page 31
Summary

- Five SHABs generate ~0.1 mJ of 2nd harmonic power at 1.8 keV (barely detectable with E-loss method)
- Found increasing power over all five SHABs
- Reasonable agreement with simulations
- Signal is sensitive to Laser Heater setting
- Found that SHAB intensity at 18 keV (14.2 GeV) exceeds that of 3rd harmonic at same photon energy (11.6 GeV) by at least factor 2
 - Measurement was suggested by J. Frisch
 - This factor should increase to 10+ if more SHABs are installed and beta-function is reduced.
- More SHABs are ready to be installed
- May wait until somebody can use the radiation before we install them

THANK YOU FOR YOUR ATTENTION!
End of Presentation