Performance of RF System for cERL Injector in KEK

contents

- Introduction
- High Power Level RF System
- Low Power Level RF System
- RF Performance
- Beam Momentum Jitter

Takako Miura (KEK)

ERL-2013, 9-13 September, 2013, at BINP, Novosibirsk, Russia
Introduction

Compact ERL (cERL) is under construction as a test facility for 3-GeV ERL future plan.

Construction of the injector was finished until 2013 April. First beam commissioning at the injector was performed for 2 months from this April to June.

Main linac is under construction now. Construction of the whole cERL will complete until middle of November 2013. Beam commissioning will start this December.

ERL-2013, 9 -13 September, 2013, at BINP, Novosibirsk, Russia
RF Power Sources for Injector

- Gun
- Buncher
- 2-cell Superconducting cavities
- CAV1
- CAV2
- CAV3
- 5 MeV
- Loaded Q
 - CAV1: 1.2×10^6
 - CAV2: 5.8×10^5
 - CAV3: 4.8×10^5
- RF freq=1.3 GHz

Requirements of RF stabilities:
- 0.1% rms, 0.1 deg.rms for cERL
- 0.01% rms, 0.01 deg.rms for 3GeV-ERL

ERL-2013, 9 -13 September, 2013, at BINP, Novosibirsk, Russia
RF Power Distribution System (outside shield)

- 20 kW IOT
- 25 kW Klystron
- 300 kW Klystron

To buncher

To cav1
To cav2
To cav3

Phase Shifter

Phase Adjustment between CAV2 and CAV3

Buncher

Double-feed 2 cell cavity

Gun

20 kW IOT
25 kW Klystron
300 kW Klystron

Outside shield
RF power distribution system (inside shield)

Space is narrow and very complicated.

Phase shifter ($\pm 33.5^\circ$)
: match RF phase between top and bottom input-couplers
Digital Low Level RF System

<table>
<thead>
<tr>
<th>BUN</th>
<th>CAV1</th>
<th>CAV2</th>
<th>CAV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback board</td>
<td>FB0</td>
<td>FB1</td>
<td>FB2 (Vector-sum)</td>
</tr>
<tr>
<td>Tuner board</td>
<td>TN0</td>
<td>TN1</td>
<td>TN2</td>
</tr>
</tbody>
</table>

- FPGA boards
- Downconverter
- IQmodulator
- Feedback board
- Tuner board
- AMC (Advanced Mezzanine Card)
- µTCA Digital Board
 - FPGA Virtex5-FX (LTC2208)
 - 16-bit ADC x 4
 - 16-bit DAC x 4 (AD9783)
- Clock input
- Ref Clock
Schematic Diagram of Digital FB System

LO 1310MHz

Down converter

1300 MHz

Klystron

PreAmp

RF switch

Interlock

Digital feedback board

Digital Filter

Vector Sum

IIR Filter

I Set Table

LFF Table

Delay

Correction

rotation

Limit

ADC

FPGA

ADC

ADC

ADC

AMC Digital Feedback Card

16bit 80MS/s

1300 MHz

MO/128

1310MHz

\[A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \]

\[Q = \begin{pmatrix} \cos\phi \\ \sin\phi \end{pmatrix} \]

\[R = \begin{pmatrix} \cos\theta \\ -\sin\theta \end{pmatrix} \]

Power PC

Linux

EPICS IOC

Gb Ethernet

Set Parameters

Wave Forms

ERL-2013, 9 -13 September, 2013, at BINP, Novosibirsk, Russia
μTCA digital board was used for tuner control.

Slow piezo-tuner feedback was performed through EPICS in this commissioning.
Stabilities of Cavity Fields

FB0 (Buncher)
- Amp: 0.05% rms
- Phase: 0.06 deg. rms

FB1 (CAV1)
- Amp: 0.01% rms
- Phase: 0.02 deg. rms

FB2 (Vector-sum)
- Amp: 0.01% rms
- Phase: 0.022 deg. rms

100kS/s
300Hz ripple from power supply

RF stabilities satisfy the required stabilities of 0.1%rms, 0.1deg.rms
Waveforms of FB2 (vector-sum)

Amplitude: 0.01% rms

Phase: 0.022 deg. rms
Measurement of Beam Momentum Jitter

Beam : 5nA (5Hz, 0.77pC/Bunch, 1ps rms, Macro pulse=1μs)
Small current & short length

Buncher was not used. (turned off)

Beam diagnostic line(Presented by Y.Honda)

Dispersi on @ screen monitor = 0.82m
Resolution = 53.4 μm/pixel
(ΔP/P=6.5e-5)

Momentum was determined by the peak point of the projection of the screen.
RF feedback was working, but
Beam momentum Jitter was very large, 0.3% rms

It caused by phase error between CAV2 and CAV3

ERL-2013, 9-13 September, 2013, at BINP, Novosibirsk, Russia
Phase Optimization for Vector-sum

“Phase shifter in CAV3 line” and “feedback phase” were optimized while observing screen monitor.
(CAV2-CAV3 transit time is depends on the energy)

Phase shifter was changed to the direction to beam energy high. (-> crest phase)

Phase shifter was changed 34mm shorter than before. (38deg)

300kW Klystron

Phase Adjustment between CAV2 and CAV3
Momentum Jitter After Phase Optimization

Momentum jitter was improved.

FB 2HG: \(\frac{dP}{P} = 0.0056858\%\) rms

Momentum Jitter = 0.006\% rms

Good stability of beam momentum was achieved.

ERL-2013, 9 -13 September, 2013, at BINP, Novosibirsk, Russia
Summary

- Construction of RF system for cERL-injector was finished.
- Commissioning had been performed for 2-months.
- RF fields in every cavities satisfied the required stability, 0.1%rms, 0.1deg.rms.
- Good stability of beam momentum was achieved.

Future Plan

In middle of November 2013, operation of the whole cERL will start.

- RF system for two 9-cell cavities of the main linac (ML) should be completed until then.

- In the case of 9-cell, we should pay attention to TM_{010} passband except for π mode. To remove $8/9\pi$ mode without long latency -> IIR digital filter will be modified

- Loaded Q of ML-cavities is high, 2×10^7, therefore tuner control is very important. The tuner feedback using FPGA will apply.
Thank you for your attention.