Progress towards High Intensity Heavy Ion Beams at the AGOR Facility

Sytze Brandenburg
outline

• physics motivation, objectives
• current status
 • ECR ion source
 • LEBT
 • cyclotron
 • operational safety
• conclusions
AGOR cyclotron

- K600 superconducting cyclotron
 - proton < 190 MeV
 - heavy ions down to 5.5 MeV/A
- beams from proton to Pb
AGOR cyclotron

- K600 superconducting cyclotron
 - proton < 190 MeV
 - heavy ions down to 5.5 MeV/A
- beams from proton to Pb

fragment separator and trap set ups
Physics motivation, objectives

- Low energy experiments on violation fundamental symmetries
- Focus on breaking of time reversal symmetry
 - $\beta - \nu$ correlation in nuclear β-decay (Na isotopes)
 - Permanent electric dipole moments (Ra isotopes)
 - Measurements on trapped atoms and ions
- Production: heavy ion reactions in inverse kinematics
 - Na-isotopes: Ne-beam @ 20 – 25 MeV per nucleon
 - Ra-isotopes: Pb-beam @ 7 – 10 MeV per nucleon
- Overall trapping rate: 1 event per $10^{11} - 10^{12}$ beam particles
 - Beam intensity $10^{12} - 10^{13}$ pps needed for production phase
current status

- beam intensities achieved
 - $^{20}\text{Ne}^6+$ @23.3 MeV/nucleon 1.3×10^{13} pps $P = 1$ kW
 - $^{206}\text{Pb}^{27+}$ @ 7 - 10 MeV/nucleon 3×10^{11} pps $P = 100$ W

![Graph showing extracted beam]

- $^{20}\text{Ne}^6+$ $E/A = 23.3$ MeV
duty cycle 15%

- not feasible to make scan at 90% duty cycle
ECRIS

- 14 GHz AECR-type source
cf. LBNL, JYFL
 - aluminium plasma chamber
 - open hexapole structure
- dual frequency heating
 - 14 GHz up to 2 kW
 - 11 – 12.5 GHz (variable frequency) up to 400 W,
- modifications plasma chamber
 - stainless steel plasma electrode + collar
 - stainless steel biased disk

poster MOPCP53
ECRIS

- optical diagnostics
 - CCD camera viewing plasma
 - low depth of field optics ➔ scan over depth
 - very useful for tuning (stability)

- routinely obtained output
 - $^{16}\text{O}^{6+}$ 500 μA
 - $^{20}\text{Ne}^{6+}$ 500 μA
 - $^{206}\text{Pb}^{27+}$ 50 μA

best result: $^{16}\text{O}^{6+}$ 750 μA
ECRIS

- installed SUPERNANOGAN at location polarized source
- AECR dedicated for metal beams

⇒ more output.....

loan from HZB
LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small \Rightarrow 30% beam loss
 - large higher order aberrations \Rightarrow 50% beam loss transfer line
- simulation \leftrightarrow experiment: semi-quantitative agreement
LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small \Rightarrow 30 % beam loss
 - large higher order aberrations \Rightarrow 50 % beam loss transfer line
- simulation \leftrightarrow experiment: semi-quantitative agreement
LEBT ion optics

- ECRIS analysing magnet
 - acceptance too small \Rightarrow 30 % beam loss
 - large higher order aberrations \Rightarrow 50 % beam loss transfer line
- simulation ↔ experiment: semi-quantitative agreement
- no space for separate hexapoles
- magnet redesign
 - increased acceptance
 - reduced aberrations
 - similar LBNL
LEBT vacuum

- beam line ECR – cyclotron
 - turbomolecular + ion getter pumps
 - length 20 m, average pressure \(\sim 2 \times 10^{-8} \) mbar
 - transmission 90 % for \(^{206}\text{Pb}^{27+}\)

- vertical injection beam line
 - turbomolecular pump at bottom
 - little conductance in cyclotron center
 - length 5 m, average pressure \(\sim 5 \times 10^{-7} \) mbar
 - transmission \(\sim 50 \% \) for \(^{206}\text{Pb}^{27+}\)

\[\Rightarrow\] work to be done
 - high magnetic field \[\Rightarrow\] no pumps with moving parts
 - NEG-pumps under investigation

- for lighter ions (Ne, Ar) overall transmission \(\sim 90 \% \)
cyclotron vacuum

- basics transmission understood
cyclotron vacuum

- high intensity: beam loss induced desorption
 - degradation vacuum and transmission
 - different pressure distribution in cyclotron
- limiting factor for increase intensity Pb-beams

- modelling + experiment
 - particle tracking after charge exchange
 - spatial distribution + angle of incidence
cyclotron vacuum

- high intensity: beam loss induced desorption
 - degradation vacuum and transmission
 - different pressure distribution in cyclotron
- limiting factor for increase intensity Pb-beams

- modelling + experiment
 - particle tracking after charge exchange
 - spatial distribution + angle of incidence
 - desorption yield vs. angle of incidence
cyclootron vacuum

- high intensity: beam loss induced desorption
 - degradation vacuum and transmission
 - different pressure distribution in cyclotron
 - limiting factor for increase intensity Pb-beams

- modelling + experiment
 - particle tracking after charge exchange
 - spatial distribution + angle of incidence
 - desorption yield vs. angle of incidence
 - 3D modelling pressure distribution
 - pumps
 - “normal” outgassing
 - beam induced desorption
cyclotron vacuum

- possibilities for mitigation
 - pumping in most regions conductance limited
 - reduction outgassing (= base pressure) not very effective
 - reduction beam induced desorption effective

\[\text{beam intensity at } r = 0 \times [10^{12} \text{ pps}] \]

\[\text{output intensity } [\text{pps}] \]

\[P_0 = 10^{-9} \text{ mbar} \quad Q = 10^5 \]
\[P_0 = 10^{-7} \text{ mbar} \quad P_c = 2 \times 10^{-6} \text{ mbar} \]
\[P_0 = 10^{-6} \text{ mbar} \]

\[P_0 = 10^{-8} \text{ mbar} \quad P_0 = 10^{-7} \text{ mbar} \quad P_0 = 10^{-6} \text{ mbar} \]
\[Q = 10^4 \]
\[Q = 10^5 \]
\[Q = 10^6 \]

\[P_0 = 10^{-7} \text{ mbar} \quad P_c = 2 \times 10^{-6} \text{ mbar} \]
cyclotron vacuum

• possibilities for mitigation
 • pumping in most regions conductance limited
 • reduction outgassing (= base pressure) not very effective
 • reduction desorption effective
 • gold coating median plane ⇒ factor 10 (GSI)
 • scrapers (increase angle of incidence) ⇒ factor 4 (GSI)
 • in preparation
cyclotron extraction

- new electrostatic deflector
- cooling septum and cathode
cyclotron extraction

- new electrostatic deflector
 - cooling septum and cathode
 - pre-septum
cyclotron extraction

- new electrostatic deflector
 - cooling septum and cathode
 - pre-septum
 - assembly stage
beam loss control

- power density in material up to 1 kW/mm³
 - damage at 10 ms scale
 - beam loss control system essential
- modular system to measure beam losses
- variable duty cycle chopper to control intensity

poster MOPCP87
conclusions

- $^{20}\text{Ne} \: @ \: 23.4 \: \text{MeV/nucleon} \: 10^{13} \: \text{pps}, \: 1 \: \text{kW beam demonstrated}$
 - technical improvements for routine operation nearly completed
- $^{206}\text{Pb} \: @ \: 7 - 10 \: \text{MeV/nucleon} \: 3 \times 10^{11} \: \text{pps}, \: 100 \: \text{W demonstrated}$
 - factor ≥ 3 increase needed
 - several on-going improvements
 - ion optics LEBT
 - vacuum LEBT
 - desorption cyclotron
 - feasible
thank you for your attention